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Abstract

This paper deals with the nonlinear vibration and dynamic response of functionally graded material plates in thermal
environments. Heat conduction and temperature-dependent material properties are both taken into account. The
temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness
direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction
according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are
based on the higher-order shear deformation plate theory and general von Karman-type equation, which includes
thermal effects. All four edges of the plates are assumed to be simply supported with no in-plane displacements. The
equations of motion are solved by an improved perturbation technique to determine nonlinear frequencies and dynamic
responses of functionally graded plates. The numerical illustrations concern nonlinear vibration characteristics of
functional graded plates with two constituent materials in thermal environments. The results reveal that the temper-
ature field and volume fraction distribution have significant effect on the nonlinear vibration and dynamic response of
the functionally graded plate.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) have gained considerably attention in engineering community,
especially in high temperature applications such as spacecraft and nuclear plants, due to their advantages of
being able to withstand severe high temperature gradient while maintain structural integrity. FGMs are
microscopically inhomogeneous composites usually made from a mixture of metals and ceramics. By
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gradually varying the volume fraction of constituent materials, their material properties exhibit a smooth
and continuous change from one surface to another, thus eliminating interface problems and mitigating
thermal stress concentrations. FGMs were initially designed as thermal barrier materials for aerospace
structures and fusion reactors. They are now developed for the general use as structural components in high
temperature environments (Liew et al., 2001, 2003).

Since this area is relatively new, published literature on the free and forced vibration of FGM plates is
limited and most of them are focused on the cases of the linear problem. Tanigawa et al. (1996) examined
transient thermal stress distribution of FGM plates induced by unsteady heat conduction, temperature-
dependent material properties were considered. Kim and Noda (2002) discussed transient displacement of
FGM plates due to heat flux by a Green’s function approach based on the classical laminated plate theory.
Cheng and Batra (2000) studied the steady state vibration of a simply supported functionally graded
polygonal plate with temperature-independent material properties. Praveen and Reddy (1998) analyzed the
nonlinear static and dynamic response of functionally graded ceramic-metal plates in a steady temperature
field and subjected to dynamic transverse loads by the finite element method (FEM) based on the first-order
shear deformation plate theory (FSDPT). Reddy (2000) developed both theoretical and finite element
formulations for thick FGM plates according to the higher-order shear deformation plate theory (HSDPT),
and studied the nonlinear dynamic response of FGM plates subjected to suddenly applied uniform pres-
sure. Ng et al. (2000) studied parametric resonance or dynamic stability of simply supported FGM thin
plates under harmonic in-plane loading. Yang and Shen (2001) presented the dynamic response of initially
stressed FGM thin plates. He et al. (2001) gave the active control of dynamic response of FGM plates
bonded with piezoelectric actuators. In their analysis finite element equations based on the classical plate
theory were formulated. In the aforementioned studies, however, material properties were considered in a
constant temperature environment (7 = 300 K). Recently, Yang and Shen (2002, 2003) provided vibration
characteristic and transient response of shear-deformable functionally graded plates and panels in thermal
environments. In their analyses, the material properties were considered to be temperature-dependent and
the effect of temperature rise on the dynamic response was reported. In fact, the heat conduction usually
occurs (Tanigawa et al., 1996; Liew et al., 2001, 2003; Kim and Noda, 2002), but it is not accounted for in
Yang and Shen (2002, 2003). It is because when the material properties are assumed to be functions of
temperature and position, and the temperature is also assumed to be a function of position, the problem
becomes very difficult.

The present work attempts to solve this problem, that is, to provide analytical solution for nonlinear free
and forced vibration of FGM plates in thermal environments. The temperature field is assumed to be
constant in the plane and only varies in the thickness direction of the plate. The material properties are
assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-
law distribution in terms of the volume fractions of the constituents. The formulations, including thermal
effects, are based on the higher-order shear deformation plate theory (Reddy, 1984) and general von
Karmadn-type equations (Shen, 1997, 2002). An improved perturbation technique is employed to determine
the nonlinear frequencies and dynamic responses of the FGM plates with two constituent materials. The
parametric studies show the effects of volume fraction index and temperature field on natural frequency,
nonlinear to linear frequency ratio and dynamic responses of the plate.

2. Theoretical development

Here we consider an FGM plate of length a, width 4 and thickness 4, which is made from a mixture of
ceramics and metals. We assume that the composition is varied from the top to the bottom surface, i.e. the
top surface (Z = h/2) of the plate is ceramic-rich whereas the bottom surface (Z = —h/2) is metal-rich. In
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such a way, the effective material properties P, like Young’s modulus E, and thermal expansion coefficient o,
can be expressed as

P =PV +PVn (1)

in which P, and P, denote the temperature-dependent properties of the top and bottom surfaces of the plate,
respectively, and may be expressed as a function of temperature (Touloukian, 1967)

P=Py(P. T +1+PT+PT*+PT°) 2)

where Py, P_y, P;, P, and P; are the coefficients of temperature 7'(K) and are unique to the constituent
materials.
V. and ¥}, are the ceramic and metal volume fractions and are related by

and we assume the volume fraction ¥ follows a simple power law as

ZZ+h>N @

ne - (%

where volume fraction index N dictates the material variation profile through the plate thickness and may
be varied to obtain the optimum distribution of component materials.

It is assumed that the effective Young’s modulus £ and thermal expansion coefficient o are temperature-
dependent, whereas the mass density p and thermal conductivity k are independent to the temperature.
Poisson’s ratio v depends weakly on temperature change and is assumed to be a constant. From Egs. (1)-
(4), one has

re,m) = ) - Bl 2 ) s (52
2.1 = ) i) (1) i) (5b)
p(2) = (b, — py) (222; h) + 0y (50)
K(Z) = (k0 — 1) (222;: h >N . (5d)

We assume that the temperature variation occurs in the thickness direction only and one-dimensional
temperature field is assumed to be constant in the XY plane of the plate. In such a case, the temperature
distribution along the thickness can be obtained by solving a steady-state heat transfer equation

d

S ALGE R ©

dz

This equation is solved by imposing boundary condition of T = Ty at Z=h/2and T = T, at Z = —h/2. The
solution of this equation, by means of polynomial series, is (Javaheri and Eslami, 2002)

T(Z) =Ty + (T — Tv)n(2) (7)
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(8a)
C=1- Ktb + Kb _ K K _ K (8b)
(N+ 1Dk, (@N+Dxi BN+ Dxi (4N + ki (5N + 1)k,
where kg, = K, — Kp. In particular, for an isotropic material, Eq. (7) may then be expressed as
i+T, T,—T,
r(z)=" 10 Iy 9)

2 h

From Eqgs. (5a), (5b) and (7), it can be seen that now E;, Ey, o, and o, are all functions of temperature and
position.

Suppose the plate is subjected to a transverse dynamic load ¢(X,Y,¢). As usual, the coordinate system
has its origin at the corner of the plate on the middle plane. Let U, V and W be the plate displacements
parallel to a right-hand set of axes (X, Y, Z), where X is longitudinal and Z is perpendicular to the plate. ¥,
and ¥, are the mid-plane rotations of the normals about the Y- and X-axes, respectively. Reddy (1984)
developed a simple higher-order shear deformation plate theory, in which the transverse shear strains are
assumed to be parabohcally distributed across the plate thickness and which contains the same dependent
unknowns (U, V, W, ¥, and ¥ ;) as in the first-order shear deformation theory, but no shear correction
factors are requlred. Based on Reddy s higher-order shear deformation plate theory, Shen (1997) derived a
set of general von Kdrmdn-type equations which can be expressed in terms of a transverse displacement ¥,
two rotations ¥, and ¥,, and stress function F defined by N, =F ,,, N,=F_, and N,, = —F ,,, where a
comma denotes partial differentiation with respect to the corresponding coordinates. These general von
Kéarman-type equations are successfully used in solving many nonlinear problems, e.g. nonlinear bending,
post-buckling and nonlinear vibration of shear deformable laminated plates (Shen, 1999, 2000; Huang and
Zheng, 2003). Following Shen (1997), we can easily obtain the motion equations of an FGM plate in
thermal environments as

Lu() = Lp(Vo) = Li(Vy) + Lu(F) — Lis(N') = L (M)

:Z(W,F)+L17(W) +18§‘+186§‘+q (10)
Lo(F) + Ln(P.) + Ls(P,) — Loa(W) — Los (NT) — LW, W) (11)
Lo (W) + Ln(Fy) — Ls(P,) + Lya(F) — Las (N ) — Ly (ST) = lgz—z + 1P, (12)
Las(W) — Lz (P,) + Las(P,) + Laa(F) — Las (NT) ~ L (ET) — I %—V; + 10, (13)

in which /; and I; are defined as in Huang and Zheng (2003), and the linear operators L;( ) and the
nonlinear operator L( ) are defined as in Shen (2002).
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In the above equations, the superposed dots indicate differentiation with respect to time. The forces,
moments and higher-order moments caused by temperature rise are defined by

T

Nx Mx Fx )2 Ax
N, M, P,|= / 4, |AT(2)(1,2,2°%)dZ (14a)
IR A /2
N, M, P, Ay
S M P
=T —T 4 |t
Sy == My - W Py (14b)
5.0 1, P,

where AT(Z) = T(Z) — Ty is temperature rise from the reference temperature 7, at which there are no
thermal strains, and

Ay On On O]l O
a(Z, T
Ay = - Q12 Q22 Qze 0 1 [chZ T” (15)
Ay O Ox Qesl L0 0 ’
in which the thermal expansion coefficient « is given in detail in Eq. (5b), and
E(Z,T VE(Z, T E(Z,T
O =0n= 1(_ v2) ;o On= %, O16=0x% =0, QOu=0s=0e = 2((1 n v)) (16)

where E is given in detail in Eq. (5a).
It is assumed that all four edges are simply supported with no in-plane displacements. The boundary
conditions are

X=0,a
W=¥=0 (17a)
T=0 (17b)
N, =0 (17¢)
Y =05
W=W¥,=0 (174d)
V=0 (17e)
N, =0 (17f)

Note that the stretching—bending coupling gives rise to bending curvatures under the action of in-plane
loading, no matter how small these loads may be. In this situation the boundary condition of zero bending
moment cannot be incorporated accurately, as reported in Shen (2002). The conditions expressing the
immovability conditions (17b) and (17e) are fulfilled on the average sense as (Shen, 2002)

b pra ATT
/0/0 %MdY:O (18a)
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/00 2—;deX 0 (18b)
In Eq. (18)
ZJU(*ATISZZ AESZ <BT1 312 ETI) ?+(B2 >aaq;
—3;2<ET1662)Z+ET222)Z>— ( ( Ny 4 _) (19a)
T2 (- o) T ()
5 (;lg;jw;zg;)— (3F) - (1" +-1) 190)

In Egs. (19a) and (19b), and what follows, [4;], [B}], [D]]. [E}], [F;] and [H}] (i,j =1, 2, 6) are reduced
stiffness matrices, determined through relatlonshlps

A'=A", BB=-A"'B, DD=D-BA'B, EE=—-A"'E, FF=F-EA'B,
H =H-EA'E (20)
where 4;;, B;; etc., are the plate stiffnesses, defined in the standard way (Reddy, 1984).

3. Analytical method and asymptotic solutions

Having developed the theory, we will try to solve Egs. (10)—(13) with boundary condition (17). Before
proceeding, it is convenient to first define the following dimensionless quantities for the plate [with y,; in
Eq. (28) below defined in Shen (2002)].

x=nX/a, y=nY/b, z=2Z/h, B=alb, W =TW/[D;Dypd; A"

F= F/[DT1D;2]1/27 (Y, ¥)) = (Wxa?y)a/”[DTlD;zATlA;z]1/47 Vs = —A1, /45
Y14 = [Déz/D’fdl/z, Y2 = [Afl/Azz]l/za (V71 772) = (A;aAI)az/ﬁz[DT1D32]l/2
(V73s Vras V160 V77) = (DT DT E;T FyT)az/nzthTl

(M, M,,P,,P, MTMTPTPT)

yoixo (21)
= (M, M,,4P. /3" 4P, /3" M, M, 4P, /3" 4P, /31°)a’ /7*D}, D}, Dy, A} 3] *
EO Ilanz 4E0([511 - 1412)
T =— o 1 = - =
P ,007 Y170 2poD}, y i 3p 21D,

(750, 790, 710) = (Is, L9, 1ho) —~~ 0 Ay = qa4/”4DT1[DT1D§2AT1A§2]1/4
in which E, and p,, are the reference values of Ey, and p,, at the room temperature (7, = 300 K), respectively,
and 4] (= A7), D] (= D)), and F (= F), are defined by

AT DI F! "4,
[A‘T ot B }Tl :—/ {Ay]AT(Z)(LZ,?)dZ (22)
y y

y —h/2
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where T = (T; + T, — 275)/2. We then expand the temperature 7(z) in the Taylor series as
T(z) = 5o+ 512 + 2% + 5320 + 542" +552° + -+ (23)

From Egs. (22) and (23), 4!, D! and F are determined, detail of which can be found in Appendix A.
Egs. (10)—(13) can then be re-written in the following dimensionless form

Li(W) = Lio(¥) — Li3(¥y) + vialia(F) —L16(MT)

0P,
= PP’ LW,F) + Liz(W) + 750 —=— ox + Vsoﬁ + g (24)
1
Lo (F) + 92aLoa (W) + V2alos(Wy) — y2aloa(W) = — 53’24[32L(W7 w) (25)
T .
Lyy(W) + Lno(V) — Laa (V) + yialaa(F) — Las(S™) = 799 o T ol (26)
T .
Lay(W) — Lap(¥y) + Laz(¥)) + 714Las(F) — Lag(S") = ”/90/35 + 710y (27)

where the dimensionless operators L;;( ) and L( ) are defined as in Shen (2002).
The boundary conditions of Eq. (17) become

x=0, m
W=, =0 (28a)
F, =0 (28b)
62F o*F oY, o'W oW
// [ 24[32 Vs +V24(/511 o +V233.3 ) V24 </611 ) + /244/32 )
1 fow\
—aval g ) T (v3avm1 — ¥s772) T | dxdy =0 (28¢)
y=0,7
W=—w -0 (28d)
Exy =0 (286)

A

1 ow\’
- 5?24ﬁ2(a> + (r2 = vs7r) T

62_F_ ﬁzaz N oY, L /3 oY, 62W+ ﬁzaz
o Vs )2 Yoa\ Y220 2~ o V522 — Vaa| V240 o) V622

dydx =0 (28f)
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We assume that the solutions of Eqs. (24)—(28) can be expressed as

W(x,y,7) = W (x,y) + W(x,y,7)

Wo(x,0,7) = Pi(x,) + Palx,0,7)

Y, (x,y,7) = Pi(x.p) + P, (x,,7)

F(x,y,7) = F*(x,y) + F(x,,7)

(29)

where W*(x,y) is an initial deflection due to initial thermal bending moment, and W (x, y, ) is an additional
deflection. ¥} (x,y), ¥} (x,y) and F*(x,y) are the mid-plane rotations and stress function corresponding to
w* (x,y).Ni’x(x,y, ), ?’y(x,y, 1) and F(x,y, 1) are defined analogously to Vi (x,»), ¥, (x,y) and F*(x,y), but
are for W(x,y,1).

Due to the bending-stretching coupling effect in the FGM plate, the thermal pre-load will bring about
deflections and bending curvatures which have significant influences on the plate vibration characteristics.
To account for this effect, the pre-vibration solutions W*(x,y), ¥;(x,y), ¥, (x,y) and F*(x, y) are sought at
the first step from the following nonlinear equations

217 2 117 *
Li(W7) = Lia(W}) = Lis(¥}) + 7aLia(F7) — Lis(MT) 4y (px aapz +PyaaTn:)

L 0
Lot (F7) 4 724Loa(¥5) + 12alas (W) = auloa (W) = — %mﬁzL(W*a wr) (31)
Ly (W) + Lo (¥;) = L3z (¥;) + 14Lsa(F7) — Las(ST) = 0 (32)
Lay(W") = Lia(P}) + Loz (V) + 71aLas(F*) — Lag(ST) = 0 (33)

In Eq. (30), p, and p, are edge compressive stresses induced by temperature rise with edge restraints. The
solutions of Egs. (30)—(33) can be assumed to be as

y) = Z Z Wy Sin kx sin 1y

k=13, 1213,
P (x,y) Z Z )y COS kx sin Iy
k=13, I=13... ”
¥ (x,y) Z Z ) Sinkx cos Iy (34)
k=13, 1213,
1 . .
F*(x,y) = ) (B(()%)y2 +b(0%)x2> + Z Z S sin kx sin [y

k=13,.. I=13,...

We then expand the constant thermal bending moments in the double Fourier sine series as

T T (0) (0)
[%T gT} = _{%)@ gf())] Z Z %smkxsm ly (35)
y v k=13,.. I=13,.
Substituting Egs. (34) and (35) into Egs. (30)-(33) and applying Galerkin procedure to Egs. (30) and
(), Wi, (W) (¥,),, and fi; can easily be determined, the detailed expressions are given in Appendix B.
Then an initially stressed FGM plate is under consideration and W (x,y,7), ¥,(x,,7), ¥ y(x,y,7) and
F(x,y,7) satisfy the nonlinear equations
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Liy(W) — Lip(P,) — Lis(P,) + 14L1a(F)

o o, ov
= V14/32L(W +w 7F) + Ly (W) + V80— o + Vgoﬁ + 74 (36)

_ _ - _ 1 _ _

LZI(F) + V24L22(lllx) + ’/24L23(lpy) - V24L24(W) = _§V24/32L(W + 2w, W) (37)
- . - ow

Lyt (W) + Lo (W) — Lys(P,) + p1aLsa(F) = yop—— o T v, (38)
~ ~ ~ ~ @I/~V i

Loy(W) = Lop(Ws) + Laz (W) + P1alaa(F) = "/9055 + 710, (39)

The initial conditions are assumed to be

- ow
W|._, = | = 0 (40a)
=0

~ oV,

V=2 =0 (40b)
=0

~ oV,

'Py|r:0 = arr = O (400)
=0

A perturbation technique is now used to solve Egs. (36)—(39). The essence of this procedure, in the
present case, is to assume that

xy7, Zany,
xy,rs Zany,

(60,7, 8) Zs"[’x] (x, 3,7 (41)

(X, 7,8 Ze"l’vjxy,

(X, 0, 7,¢) ZF/L X, 9, T

where ¢ is a small perturbation parameter. Here we introduce an important parameter T = ¢t, which may be
called a slow variable, to improve perturbation procedure for solving nonlinear dynamic problem.

Substituting Eq. (41) into Egs. (36)—(39), and collecting terms of the same order of ¢, a set of pertur-
bation equations is obtained. Applying Galerkin procedure to the second equation of each order, and
solving these equations step by step, we obtain asymptotic solutions, up to third-order, as

W (x,y,7) = elwi (1) + gy (t)] sin mx sin ny + (ew; (1))’ [4ga1; sin mx sin ny + gs31 sin 3mx sin ny
+ ga13 sin mx sin 3ny] + O(&*) (42)
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V. (x, 1) =¢ [gﬁll‘l)wl (1) 4 g1 (1) | cos mx sin ny + gi2(ew (1))* sin 2mx + (ewy (1))’

X {ocggll’l)gm cos mx sinny+g§31’l)g331 cos 3mxsinny+g§11’3>g313 cos mxsin 3ny| + O(&*)

(43)

g’y(x,y, ) =¢ [géll’l)wl (7) + g3 (r)} sin mx cos ny + gy (ew; (‘c))2 sin 2ny + (ew, ('c))3
X [ocggll‘”gm sin mx cos ny + gfl’l)gm sin 3mx cos ny + g£11’3)g313 sin mx cos 3ny} +0(&"

(44)

F(x,y,7) =¢ [g§‘1~‘)w1 (7) + gaiy (r)} sin mx sin ny
— (ewi (1)) (Bf)%))yz/2 + b)x2 )2 — gany 08 2ny — gax COS 2mx> + (ewi (7))’

X [ocggll"l)gm sin mx sin ny + gﬁ’”gm sin 3mx sin ny + g§11’3)g313 sin mx sin 3ny} + 0(84) (45)

e,y 1) =¢ {gﬂwl + ga3Wy r)} sin mx sinny + (ew; (r))z(g441 €08 2mx + gap COS 2ny)
— yMﬁ ew (1 2 Z Z Wi (Bg%))kz + b((]? P?— 4k2n2g402 cos 2ny — 4l2m2g420 cosS 2mx>
]
X sin kx sin Iy + agay (ewy (1))’ sin max sin ny + O(&*) (46)

Note that in Eqgs. (42)— (46) T is replaced by 7 and for the case of free vibration o = 0, & = 1, otherwise
o =1, & = 0. Coeflicients g11 , gél , g31 (z j =1,3) etc. are given in detail in Appendix B.

Multiplying Eq. (46) by (sin mx sinny) and integrating over the plate area, one has
d2 (8W1) =

g3 —qa T84 (ew1) + gaa(ewn)” + Gga(ewr)’ = 2,(7) )
in which

= 4 [T . .

q(T) = = Aq(x,y,7) sinmx sin nydxdy (48)

3.1. Free vibration

When & =1, 4,(tr) =0, Eq. (47) becomes the free vibration equation of the plate. The nonlinear fre-
quency of the plates can be expressed as (Wang, 1992)
9842841 — 1084%4142 2

onL = oL |1+
NL L 12&%1

(49)
where wp = [g41/ g43]1 /2 is the dimensionless linear frequency, and 4 = W, /h is the amplitude to thickness

ratio. Accordmg to Eq. (21), the corresponding linear frequency can be expressed as @p = or(n/a)
(Eo/po)"?, where Ey and p, are defined as in Eq. (21).
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3.2. Forced vibration

When the forced vibration is under consideration, we take @ = 0. In such a case, Eq. (47) can be re-
written as

gii (1) + ewr (1) 0? + 22 (awy (1)) + O(&*) = %4(®) (50)

843 843

If zero-valued initial conditions prevail, i.e. w;(0) = w;(0) = 0, Eq. (50) may then be solved by using the
Runge—Kutta iteration scheme (Pearson, 1986)
. (Aﬂ:)2
(ewn)ppy = (ewn); + A(ewn); + == (L1 + Lo + Ls) (51)

(Ly + 2Ly + 2L + L)

At
6

where At is the time step, and

(8w1)i+l = ('Swl)[ +

Ly = f(t, (ew1)), La :f<fi+%7(8wl)[+7

2
A A y ) A 2
Ly=f ri+—f,(sw1)l_+M+( 0 -
. (Ar)2
L4 :f T; + AT7 (SWI)I. —+ A‘L’(Swl)i + TL2
in which
f(Tax) = —szx — gﬁx2 —+ @ (53)
843 843

As a result, the solution of Eq. (50) is obtained numerically. Re-substituting it into Egs. (42)—(46), both
displacement and stress function are determined. Next, substituting Eq. (29) into boundary conditions (28),
the coeflicients B(()?, bé%), Béff and b(%) are then determined as given in Appendix B.

4. Numerical examples and discussion

Numerical results are presented in this section for FGM plates with two constituent materials. A pro-
gram was developed for the purpose and many examples have been solved numerically, including the
following.

4.1. Comparison studies

To ensure the accuracy and effectiveness of the present method, three test examples were solved for free
and forced vibrations of pure isotropic and FGM plates.

Example 1. We first consider the nonlinear free vibration of an isotropic square plate (a/b = 1.0, b/h = 10
and v=0.3) under different thermal loading conditions AT/T, =0, 0.25, 0.5 and 0.75, where
T, = 119.783 /(« x 10%) is the critical temperature of the plate (Bhimaraddi and Chandrashekhara, 1993).
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The frequency parameter Q = @y (a?/h)[p(1 — v*)/E]"* and nonlinear to linear frequency ratio wy; /oy are
calculated and compared in Table 1 with the results of Bhimaraddi and Chandrashekhara based on the
classical plate theory (CPT), first-order shear deformation plate theory (FSDPT) and higher-order shear
deformation plate theory (HSDPT).

Example 2. We now consider the free vibration of an FGM square plate made of aluminum oxide and Ti—
6Al1-4V. The top surface is ceramic-rich, whereas the bottom surface is metal-rich. The material properties,
as given in He et al. (2001), are: E, = 105.7 GPa, v, = 0.2981, p, = 4429 kg/m?® for Ti-6A1-4V; and
E, = 320.24 GPa, v, = 0.26, p, = 3750 kg/m? for aluminum oxide. The FGM plate has a = b = 0.4 m and
h = 5 mm. Table 2 gives the comparison of natural frequency @, (Hz) for the two special cases of isotropy,
i.e. volume fraction index N = 0 and 2000. The FEM results of He et al. (2001) based on the classical plate
theory (CPT) and semi-numerical results of Yang and Shen (2002) based on higher-order shear deformation
plate theory (HSDPT) are also given for direct comparison.

Table 1
Comparison of natural frequency Q and nonlinear to linear frequency ratios for an isotropic square plate under different thermal
loading conditions (a/b = 1.0, b/h = 10 and v = 0.3)

AT/ Ty Sources Q W max /B
0.0 0.2 0.4 0.6 0.8 1.0
0.25 HSDPT? 4.7624 1.000 1.027 1.105 1.222 1.368 1.535
FSDPT* 4.7232 0.922 1.019 1.097 1.215 1.362 1.529
CPT* 4.9380 1.037 1.063 1.138 1.252 1.395 1.559
Present 4.7636 1.000 1.027 1.105 1.225 1.374 1.546
0.5 HSDPT 3.8884 1.000 1.041 1.153 1.318 1.517 1.739
FSDPT 3.8405 0.988 1.029 1.143 1.309 1.509 1.732
CPT 4.1017 1.055 1.094 1.201 1.360 1.554 1.772
Present 3.8891 1.000 1.040 1.155 1.323 1.528 1.757
0.75 HSDPT 2.7495 1.000 1.080 1.287 1.569 1.893 2.242
FSDPT 2.6813 0.975 1.057 1.267 1.553 1.880 2.230
CPT 3.0437 1.107 1.180 1.372 1.640 1.953 2.293
Present 2.7492 1.000 1.080 1.291 1.582 1.916 2.275

“HSDPT, FSDPT and CPT results all from Bhimaraddi and Chandrashekhara (1993).

Table 2
Comparison of natural frequency @, (Hz) for simply supported FGM plates for the two special cases of isotropy
Mode sequence N =0 N = 2000
He et al. Yang and Shen  Present He et al. Yang and Shen  Present
(2001) (2002) (2001) (2002)
1 144.66 143.96 144.94 268.92 261.46 271.03
2 360.53 360.07 362.04 669.40 653.14 677.04
3 360.53 360.07 362.04 669.40 653.14 677.04
4 569.89 568.88 578.78 1052.49 1044.31 1082.38
5 720.57 718.22 723.06 1338.52 1304.79 1352.24
6 720.57 718.22 723.06 1338.52 1304.79 1352.24
7 919.74 916.40 939.19 1695.23 1694.98 1756.49
8 919.74 916.40 939.19 1695.23 1694.98 1756.49
9 1225.72 1207.09 1226.19 2280.95 2214.34 2294.47
10 1225.72 1207.09 1226.19 2280.95 2214.34 2294.47
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Example 3. Finally, the curves of central deflection as functions of time for an FGM square plate subjected
to a suddenly applied uniform load with gy = —10° N/m? and in thermal environments are plotted and
compared in Fig. 1 with the FEM results of Praveen and Reddy (1998) based on first-order shear defor-
mation plate theory (FSDPT). The FGM plate is made of aluminum and alumina. The thickness and side
of the square plate are 0.01 and 0.2 m, respectively. The top surface is ceramic-rich, whereas the bottom
surface is metal-rich. The temperature is varied only in the thickness direction and determined by the
steady-state heat conduction equation with the boundary conditions. A stress free temperature 7o = 0 °C
was taken. The material properties adopted are: E, = 70 GPa, v, = 0.3, p, = 2707 kg/m?, o, = 23.0 x 107/
°C, kp =204 W/mK for aluminum; and E, = 380 GPa, v, = 0.3, p, = 3800 kg/m?, o = 7.4 x 107%/°C,
Kk = 10.4 W/mK for alumina. In Fig. 1 dimensionless central deflection and time are defined by W =
(WEwh/qoa®) and 7 = t[En/a*p,,]"”, respectively.

These three comparisons show that the present results agree well with existing results. Note that in these
examples the material properties are assumed to be independent of temperature.

30
—e— Ceramic, Present
— ceramic, Praveen & Reddy (1998)
c
S5 —=— N=0.5, Present
3 — — . N=0.5, Praveen & Reddy (1998)
£
8 20
=)
(=]
‘D
&
Eist
a
10 L 1 L 1 L 1 L 1 L
0.0 25 5.0 75 10.0 125

Dimensionless time

Fig. 1. Comparison of central deflection versus time curves for an FGM square plate subjected to a suddenly applied uniform load and
in thermal environments.

Table 3
Temperature-dependent coefficients for ceramic and metals, from Reddy and Chin (1998)
Materials Proprieties P, P, P P, P P (T =300 K)
ZrO, E (Pa) 244.27e+9 0 -1.371e-3 1.214e-6 —-3.681e-10 168.063e+9
o (1/K) 12.766e—6 0 —1.491e-3 1.006e—5 —6.778e—11 18.591e—6
Ti-6Al1-4V E (Pa) 122.56e+9 0 —4.586e—4 0 0 105.698e+9
o (1/K) 7.5788e—6 0 6.638¢—4 -3.147e-6 0 6.941e—6
SizNy E (Pa) 348.43e+9 0.0 -3.070e—4 2.160e-7 —8.946e-11 322.2715e+9
o (1/K) 5.8723e—6 0.0 9.095¢—4 0.0 0.0 7.4746e—6
SUS304 E (Pa) 201.04e+9 0.0 3.079¢—4 —6.534e-7 0.0 207.7877e+9

o (1/K) 12.330e-6 0.0 8.086e—4 0.0 0.0 15.321e-6
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Table 4
Natural frequency parameter @ = @y (a®/h)[py(1 — v2)/Eo)"/? for ZrO,/Ti-6A1-4V square plates in thermal environments
Mode
(1,1 (1,2) 2,2 (1,3) (2,3

T, =300 K Zr0, 8.273 19.261 28.962 34.873 43.070
T, =300 K 0.5 7.139 16.643 25.048 30.174 37.288
1.0 6.657 15.514 23.345 28.120 34.747

2.0 6.286 14.625 21.978 26.454 32.659

Ti-6Al-4V 5.400 12.571 18.903 22.762 28.111

T, = 300 K Zr0, 7.868 18.659 28.203 34.015 42.045
T, =400 K 0.5 6.876 16.264 24.578 29.651 36.664
Temperature- 1.0 6.437 15.202 22.956 27.696 34.236
dependent 2.0 6.101 14.372 21.653 26.113 32.239
Ti-6A1-4V 5.322 12.455 18.766 22.603 27.921

T, = 300 K Zr0O, 8.122 19.193 28.986 34.958 43.190
T, = 400 K 0.5 7.154 16.644 25.136 30.136 37.476
Temperature- 1.0 6.592 15.531 23.442 28.273 34.936
independent 2.0 6.238 14.655 22.078 26.605 32.840
Ti-6Al-4V 5.389 12.620 19.104 22.905 28.261

T, =300 K Zr0, 6.685 16.986 26.073 31.567 39.212
T, = 600 K 0.5 6.123 15.169 23.166 28.041 34.789
Temperature- 1.0 5.819 14.287 21.768 26.342 32.660
dependent 2.0 5.612 13.611 20.652 24.961 30.904
Ti-6A1-4V 5.118 12.059 18.175 21.898 27.045

T, =300 K Zr0, 7.686 18.749 28.527 34.472 42.713
T, = 600 K 0.5 6.776 16.367 24.859 30.044 37.201
Temperature- 1.0 6.362 15.308 23.216 28.036 34.714
independent 2.0 6.056 14.474 21.896 26.435 32.664
Ti-6Al1-4V 5.284 12.511 18.902 22.784 28.168

4.2. Parametric studies

The close agreements between the present results and those of the referenced solutions as shown in
Tables 1 and 2, and Fig. 1 demonstrated the accuracy and effectiveness of the present method. The method
was thus deployed to carry out a parametric study to examine the nonlinear vibration and dynamic re-
sponse of FGM plates in thermal environments. Two sets of material mixture are considered. One is zir-
conium oxide and titanium alloy, referred to as ZrO,/Ti-6Al-4V, and the other is silicon nitride and
stainless steel, referred to as Si3sN4/SUS304. The upper surface of these two FGM plates is ceramic-rich and
the lower surface is metal-rich. The thickness and side of the square plate are 2 = 0.025 m and ¢ = 0.2 m,
respectively. The mass density and thermal conductivity are: p = 3000 kg/m?, ¥ = 1.80 W/mK for ZrO,;
p = 4429 kg/m?, k = 7.82 W/m K for Ti-6A1-4V; p = 2370 kg/m?, k = 9.19 W/m K for Si;Ny; and p = 8166
kg/m?, k = 12.04 W/mK for SUS304. Young’s modulus and thermal expansion coefficient of these mate-
rials are assumed to be temperature-dependent and listed in Table 3 (from Reddy and Chin, 1998). Pois-
son’s ratio v is assumed to be a constant, for ZrO,/Ti-6Al1-4V plate v = 0.3, and for Si;N,/SUS304 one
v =10.28.

In all examples the deflection mode (m,n) = (1, 1) was used and in Eq. (34) k and [ are taken as 1, 3 and
5, and in Egs. (51) and (52) At = 2 ps is taken as the time step for Runge-Kutta iteration method. The
temperature field is assumed to vary only in the thickness direction and determined by the steady-state heat
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Table 5
Natural frequency parameter Q = @y (a*/h)[py(1 — vz)/EO]l/2 for Si3N4/SUS304 square plates in thermal environments
Mode
(1,1) (1,2) (2,2) (1,3) (2,3)

T, =300 K Si3Ny 12.495 29.131 43.845 52.822 65.281
T, = 300 K 0.5 8.675 20.262 30.359 36.819 45.546
1.0 7.555 17.649 26.606 32.081 39.692
2.0 6.777 15.809 23.806 28.687 35.466
SUS304 5.405 12.602 18.967 22.850 28.239
T, = 300 K Si3Ny 12.397 29.083 43.835 52.822 65.310
T, =400 K 0.5 8.615 20.215 30.530 36.824 45.575
Temperature- 1.0 7.474 17.607 26.590 32.088 39.721
dependent 2.0 6.693 15.762 23.786 28.686 35.491
SUS304 5.311 12.539 18.959 22.828 28.246
T, =300 K SizNy 12.382 29.243 44.072 53.105 65.559
T, = 400 K 0.5 8.641 20.316 30.682 37.007 45.802
Temperature- 1.0 7.514 17.694 26.717 32.242 39.908
independent 2.0 6.728 15.836 23.893 28.816 35.648
SUS304 5.335 12.587 19.008 22.908 28.344
T, = 300 K Si;Ny 11.984 28.504 43.107 51.998 64.358
T, = 600 K 0.5 8.269 19.783 29.998 36.239 44.901
Temperature- 1.0 7.171 17.213 26.109 31.557 39.114
dependent 2.0 6.398 15.384 23.327 28.185 34918
SUS304 4.971 12.089 18.392 22.221 27.557
T, =300 K SizNy 12.213 28.976 43.797 52.821 65.365
T, = 600 K 0.5 8.425 20.099 30.458 36.781 45.572
Temperature- 1.0 7.305 17.486 26.506 31.970 39.692
independent 2.0 6.523 15.632 23.685 28.609 35.436
SUS304 5.104 12.342 18.763 22.658 28.084

Table 6

Effect of volume fraction index N on the nonlinear to linear frequency ratio wni/wr of FGM square plates in thermal environments
(T, =300 K, 7; =400 K)

V_Vmax/h

0.0 0.2 0.4 0.6 0.8 1.0
ZrO>ITi-6 A4V
ZrO, 1.000 1.023 1.087 1.186 1.312 1.461
0.5 1.000 1.023 1.087 1.186 1.312 1.460
1.0 1.000 1.022 1.086 1.183 1.310 1.455
2.0 1.000 1.022 1.084 1.179 1.302 1.444
Ti-6A1-4V 1.000 1.022 1.083 1.177 1.300 1.440
Si;N,/SUS304
SizN, 1.000 1.022 1.084 1.181 1.303 1.446
0.5 1.000 1.022 1.084 1.181 1.302 1.444
1.0 1.000 1.022 1.084 1.180 1.301 1.442
2.0 1.000 1.022 1.082 1.176 1.299 1.440

SUS304 1.000 1.022 1.082 1.172 1.296 1.438
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Table 7
Effect of temperature field on the nonlinear to linear frequency ratio wyy/wp, of FGM square plates (N = 2.0)
Wmax/h
0.0 0.2 0.4 0.6 0.8 1.0

ZrOsITi-6 A4V
T, =300 K, 7; =300 K 1.000 1.021 1.082 1.176 1.296 1.436
T, =300 K, 7, =400 K
Temperature-dependent 1.000 1.022 1.084 1.179 1.302 1.444
Temperature-independent 1.000 1.022 1.083 1.178 1.300 1.441
T, =300 K, T; = 600 K
Temperature-dependent 1.000 1.024 1.091 1.194 1.325 1.477
Temperature-independent 1.000 1.023 1.087 1.183 1.314 1.462
Si; N,/SUS304
T, =300 K, 7; = 300 K 1.000 1.021 1.081 1.174 1.293 1.432
T, = 300 K, 7, =400 K
Temperature-dependent 1.000 1.022 1.082 1.176 1.299 1.440
Temperature-independent 1.000 1.021 1.082 1.175 1.255 1.437
T, =300 K, 7; = 600 K
Temperature-dependent 1.000 1.023 1.088 1.188 1.315 1.463
Temperature-independent 1.000 1.023 1.087 1.187 1.313 1.460

conduction equation with the boundary conditions across the plate thickness. Typical results are listed in
Tables 4-7 and plotted in Figs. 2-5, for which the dynamic load is assumed to be a suddenly applied
uniform load with gy = —50 MPa.

Tables 4 and 5 show the effect of volume fraction index N on the natural frequency parameter of ZrO,/
Ti-6A1-4V and Si;N,4/SUS304 plates under three thermal loading conditions: case 1, T, = 300 K, 7; = 300
K; case 2, T, =300 K, 7; =400 K; and case 3, 7;, = 300 K, 7; = 600 K. Temperature-dependent and
temperature-independent material properties (values at constant temperature 300 K, as listed in Table 3)
are both taken into account. In these two Tables Q = @y (a?/h)[p,(1 — v*)/Eo]"*, where E, and p, are the
reference values of E}, and p, at 75 = 300 K. Then Tables 6 and 7 show, respectively, the effects of volume
fraction index N and temperature field on the nonlinear to linear frequency ratios wnr /wr, of the same two
FGM plates. It can be seen that the natural frequency of the FGM plate decreases with the increase of

2 0
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Fig. 2. Effect of volume fraction index N on the dynamic response of ZrO,/Ti—6A1-4V square plate subjected to a suddenly applied
uniform load and in thermal environments. (a) Central deflection versus time, (b) bending moment versus time.
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Fig. 3. Effect of volume fraction index N on the dynamic response of SizN4/SUS304 square plate subjected to a suddenly applied
uniform load and in thermal environments. (a) Central deflection versus time, (b) bending moment versus time.
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Fig. 4. Effect of temperature field on the dynamic response of ZrO,/Ti-6Al-4V square plate subjected to a suddenly applied uniform
load. (a) Central deflection versus time, (b) bending moment versus time.

volume fraction index N, but it has a small effect on the nonlinear to linear frequency ratios. On the other
hand, the temperature rise decreases the natural frequencies but increases the nonlinear to linear frequency
ratios. The results show that the FGM plate will have lower natural frequency and slightly higher nonlinear
to linear frequency ratios when the temperature-dependent material properties are taken into account.

Figs. 2 and 3 show, respectively, the effect of volume fraction index N on the dynamic response of ZrO,/
Ti-6A1-4V and Si3N,/SUS304 plates under thermal environmental condition 7;, = 300 K and 7; = 400 K.
It can be seen that the plate deflections are increased by increasing the volume fraction index N. The
bending moment is decreased for the ZrO,/Ti—6Al-4V plate, but it is increased for the Si;N,/SUS304 plate
when the volume fraction index N is increased.

Figs. 4 and 5 show, respectively, the effect of thermal environmental conditions on the dynamic response
of ZrO,/Ti-6A1-4V and Siz;N,/SUS304 plates with N = 2.0. The results show that both central deflections
and bending moments are increased with the increase in temperature. It is also be seen that the greater the
temperature rise is, the greater will be the thermally induced initial bending moments.
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Fig. 5. Effect of temperature field on the dynamic response of Si;N,/SUS304 square plate subjected to a suddenly applied uniform load.
(a) Central deflection versus time, (b) bending moment versus time.

5. Concluding remarks

The nonlinear vibration and dynamic response for simply supported FGM in thermal environments
have been presented. Heat conduction and temperature-dependent material properties are both taken into
account. The formulations are based on higher-order shear deformation plate theory and general von
Karmaén-type equations, and include thermal effects. Analytical solutions have been presented by using an
improved perturbation technique. A parametric study for FGM plates with different values of volume
fraction index and under different sets of thermal environmental conditions has been carried out. Numerical
results show that the natural frequencies are reduced by increasing the volume fraction index N and
temperature rise. The results also confirm that the temperature field and the volume fraction distribution
have significant effect on the dynamic response of FGM plates.
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Appendix A
In Eq. (23)
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in which (i = 0-5)
e = l,(-z) + Z l,(:)d(,-_k), fi= Zuka,-_k, u; = Z Uke(i—k) (A.4)
=0 =0 =0

and (with j =1, 2)
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g =pip = oS, & =pip’, & =p & =pipl, & =mph, & =it

In the above equation p' and p? (r = —1, 0, 1, 2, 3) are the coefficients in Eq. (2) for Young’s modulus on the
top and bottom surfaces. Note that in Eq. (A.4), v; has the similar form as that of e;, whereas p! and pP

(r=-1,0, 1, 2, 3) are the coefficients in Eq. (2) for thermal expansion coefficient on the top and bottom
surfaces.

Appendix B

In Eq. (34)

Noaw, Ja)?, ) 3 g @) o)
2 4 27 2 4 27
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_ KD 2 (k! (k,
S = ¢35 Wy + e wi + o3

ki ki ki ki ki ki
W)y = 0(11 Wi + Ciz " + 053 : W)y = 0(21 i + ng " + 0(23 )
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In Egs. (35)
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