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Abstract

This paper deals with the nonlinear vibration and dynamic response of functionally graded material plates in thermal

environments. Heat conduction and temperature-dependent material properties are both taken into account. The

temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness

direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction

according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are

based on the higher-order shear deformation plate theory and general von K�arm�an-type equation, which includes

thermal effects. All four edges of the plates are assumed to be simply supported with no in-plane displacements. The

equations of motion are solved by an improved perturbation technique to determine nonlinear frequencies and dynamic

responses of functionally graded plates. The numerical illustrations concern nonlinear vibration characteristics of

functional graded plates with two constituent materials in thermal environments. The results reveal that the temper-

ature field and volume fraction distribution have significant effect on the nonlinear vibration and dynamic response of

the functionally graded plate.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) have gained considerably attention in engineering community,

especially in high temperature applications such as spacecraft and nuclear plants, due to their advantages of

being able to withstand severe high temperature gradient while maintain structural integrity. FGMs are

microscopically inhomogeneous composites usually made from a mixture of metals and ceramics. By
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gradually varying the volume fraction of constituent materials, their material properties exhibit a smooth

and continuous change from one surface to another, thus eliminating interface problems and mitigating

thermal stress concentrations. FGMs were initially designed as thermal barrier materials for aerospace

structures and fusion reactors. They are now developed for the general use as structural components in high
temperature environments (Liew et al., 2001, 2003).

Since this area is relatively new, published literature on the free and forced vibration of FGM plates is

limited and most of them are focused on the cases of the linear problem. Tanigawa et al. (1996) examined

transient thermal stress distribution of FGM plates induced by unsteady heat conduction, temperature-

dependent material properties were considered. Kim and Noda (2002) discussed transient displacement of

FGM plates due to heat flux by a Green�s function approach based on the classical laminated plate theory.

Cheng and Batra (2000) studied the steady state vibration of a simply supported functionally graded

polygonal plate with temperature-independent material properties. Praveen and Reddy (1998) analyzed the
nonlinear static and dynamic response of functionally graded ceramic–metal plates in a steady temperature

field and subjected to dynamic transverse loads by the finite element method (FEM) based on the first-order

shear deformation plate theory (FSDPT). Reddy (2000) developed both theoretical and finite element

formulations for thick FGM plates according to the higher-order shear deformation plate theory (HSDPT),

and studied the nonlinear dynamic response of FGM plates subjected to suddenly applied uniform pres-

sure. Ng et al. (2000) studied parametric resonance or dynamic stability of simply supported FGM thin

plates under harmonic in-plane loading. Yang and Shen (2001) presented the dynamic response of initially

stressed FGM thin plates. He et al. (2001) gave the active control of dynamic response of FGM plates
bonded with piezoelectric actuators. In their analysis finite element equations based on the classical plate

theory were formulated. In the aforementioned studies, however, material properties were considered in a

constant temperature environment (T ¼ 300 K). Recently, Yang and Shen (2002, 2003) provided vibration

characteristic and transient response of shear-deformable functionally graded plates and panels in thermal

environments. In their analyses, the material properties were considered to be temperature-dependent and

the effect of temperature rise on the dynamic response was reported. In fact, the heat conduction usually

occurs (Tanigawa et al., 1996; Liew et al., 2001, 2003; Kim and Noda, 2002), but it is not accounted for in

Yang and Shen (2002, 2003). It is because when the material properties are assumed to be functions of
temperature and position, and the temperature is also assumed to be a function of position, the problem

becomes very difficult.

The present work attempts to solve this problem, that is, to provide analytical solution for nonlinear free

and forced vibration of FGM plates in thermal environments. The temperature field is assumed to be

constant in the plane and only varies in the thickness direction of the plate. The material properties are

assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-

law distribution in terms of the volume fractions of the constituents. The formulations, including thermal

effects, are based on the higher-order shear deformation plate theory (Reddy, 1984) and general von
K�arm�an-type equations (Shen, 1997, 2002). An improved perturbation technique is employed to determine

the nonlinear frequencies and dynamic responses of the FGM plates with two constituent materials. The

parametric studies show the effects of volume fraction index and temperature field on natural frequency,

nonlinear to linear frequency ratio and dynamic responses of the plate.
2. Theoretical development

Here we consider an FGM plate of length a, width b and thickness h, which is made from a mixture of

ceramics and metals. We assume that the composition is varied from the top to the bottom surface, i.e. the

top surface (Z ¼ h=2) of the plate is ceramic-rich whereas the bottom surface (Z ¼ �h=2) is metal-rich. In
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such a way, the effective material properties P , like Young�s modulus E, and thermal expansion coefficient a,
can be expressed as
P ¼ PtVc þ PbVm ð1Þ
in which Pt and Pb denote the temperature-dependent properties of the top and bottom surfaces of the plate,

respectively, and may be expressed as a function of temperature (Touloukian, 1967)
P ¼ P0ðP�1T�1 þ 1þ P1T þ P2T 2 þ P3T 3Þ ð2Þ
where P0, P�1, P1, P2 and P3 are the coefficients of temperature T ðKÞ and are unique to the constituent

materials.

Vc and Vm are the ceramic and metal volume fractions and are related by
Vc þ Vm ¼ 1 ð3Þ
and we assume the volume fraction Vc follows a simple power law as
VcðZÞ ¼
2Z þ h
2h

� �N

ð4Þ
where volume fraction index N dictates the material variation profile through the plate thickness and may

be varied to obtain the optimum distribution of component materials.

It is assumed that the effective Young�s modulus E and thermal expansion coefficient a are temperature-

dependent, whereas the mass density q and thermal conductivity j are independent to the temperature.

Poisson�s ratio m depends weakly on temperature change and is assumed to be a constant. From Eqs. (1)–
(4), one has
EðZ; T Þ ¼ ½EtðT Þ � EbðT Þ�
2Z þ h
2h

� �N

þ EbðT Þ ð5aÞ

aðZ; T Þ ¼ ½atðT Þ � abðT Þ�
2Z þ h
2h

� �N

þ abðT Þ ð5bÞ

qðZÞ ¼ ðqt � qbÞ
2Z þ h
2h

� �N

þ qb ð5cÞ

jðZÞ ¼ ðjt � jbÞ
2Z þ h
2h

� �N

þ jb ð5dÞ
We assume that the temperature variation occurs in the thickness direction only and one-dimensional

temperature field is assumed to be constant in the XY plane of the plate. In such a case, the temperature

distribution along the thickness can be obtained by solving a steady-state heat transfer equation
� d

dZ
jðZÞ dT

dZ

� �
¼ 0 ð6Þ
This equation is solved by imposing boundary condition of T ¼ Tt at Z ¼ h=2 and T ¼ Tb at Z ¼ �h=2. The
solution of this equation, by means of polynomial series, is (Javaheri and Eslami, 2002)
T ðZÞ ¼ Tb þ ðTt � TbÞgðZÞ ð7Þ
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and
gðZÞ ¼ 1

C
2Z þ h
2h

� �"
� jtb

ðN þ 1Þjb

2Z þ h
2h

� �Nþ1

þ j2
tb

ð2N þ 1Þj2
b

2Z þ h
2h

� �2Nþ1

� j3
tb

ð3N þ 1Þj3
b

2Z þ h
2h

� �3Nþ1

þ j4
tb

ð4N þ 1Þj4
b

2Z þ h
2h

� �4Nþ1

� j5
tb

ð5N þ 1Þj5
b

2Z þ h
2h

� �5Nþ1
#

ð8aÞ

C ¼ 1� jtb

ðN þ 1Þjb

þ j2
tb

ð2N þ 1Þj2
b

� j3
tb

ð3N þ 1Þj3
b

þ j4
tb

ð4N þ 1Þj4
b

� j5
tb

ð5N þ 1Þj5
b

ð8bÞ
where jtb ¼ jt � jb. In particular, for an isotropic material, Eq. (7) may then be expressed as
T ðZÞ ¼ Tt þ Tb
2

þ Tt � Tb
h

Z ð9Þ
From Eqs. (5a), (5b) and (7), it can be seen that now Et, Eb, at and ab are all functions of temperature and
position.

Suppose the plate is subjected to a transverse dynamic load qðX ; Y ; tÞ. As usual, the coordinate system

has its origin at the corner of the plate on the middle plane. Let U , V and W be the plate displacements

parallel to a right-hand set of axes (X ; Y ; Z), where X is longitudinal and Z is perpendicular to the plate. Wx

and Wy are the mid-plane rotations of the normals about the Y - and X -axes, respectively. Reddy (1984)

developed a simple higher-order shear deformation plate theory, in which the transverse shear strains are

assumed to be parabolically distributed across the plate thickness and which contains the same dependent

unknowns (U , V , W , Wx and Wy) as in the first-order shear deformation theory, but no shear correction
factors are required. Based on Reddy�s higher-order shear deformation plate theory, Shen (1997) derived a

set of general von K�arm�an-type equations which can be expressed in terms of a transverse displacement W ,

two rotations Wx and Wy , and stress function F defined by Nx ¼ F ;yy , Ny ¼ F ;xx and Nxy ¼ �F ;xy , where a

comma denotes partial differentiation with respect to the corresponding coordinates. These general von

K�arm�an-type equations are successfully used in solving many nonlinear problems, e.g. nonlinear bending,

post-buckling and nonlinear vibration of shear deformable laminated plates (Shen, 1999, 2000; Huang and

Zheng, 2003). Following Shen (1997), we can easily obtain the motion equations of an FGM plate in

thermal environments as
eL11ðW Þ � eL12ðWxÞ � eL13ðWyÞ þ eL14ðF Þ � eL15 N
T

� �
� eL16 M

T
� �

¼ eLðW ; F Þ þ eL17
€W

� �
þ I8

o €Wx

oX
þ I8

o €Wy

oY
þ q ð10Þ

eL21ðF Þ þ eL22ðWxÞ þ eL23ðWyÞ � eL24ðW Þ � eL25 N
T

� �
¼ � 1

2
eLðW ;W Þ ð11Þ

eL31ðW Þ þ eL32ðWxÞ � eL33ðWyÞ þ eL34ðF Þ � eL35 N
T

� �
� eL36 S

T
� �

¼ I9
o €W
oX

þ I10
€Wx ð12Þ

eL41ðW Þ � eL42ðWxÞ þ eL43ðWyÞ þ eL44ðF Þ � eL45 N
T

� �
� eL46 S

T
� �

¼ I9
o €W
oY

þ I10
€Wy ð13Þ
in which Ij and �Ij are defined as in Huang and Zheng (2003), and the linear operators Lijð Þ and the
nonlinear operator Lð Þ are defined as in Shen (2002).
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In the above equations, the superposed dots indicate differentiation with respect to time. The forces,

moments and higher-order moments caused by temperature rise are defined by
N
T

x M
T

x P
T

x

N
T

y M
T

y P
T

y

N
T

xy M
T

xy P
T

xy

2664
3775 ¼

Z h=2

�h=2

Ax

Ay

Axy

24 35DT ðZÞð1; Z; Z3ÞdZ ð14aÞ

S
T

x

S
T

y

S
T

xy

2664
3775 ¼

M
T

x

M
T

y

M
T

xy

2664
3775� 4

3h2

P
T

x

P
T

y

P
T

xy

2664
3775 ð14bÞ
where DT ðZÞ ¼ T ðZÞ � T0 is temperature rise from the reference temperature T0 at which there are no

thermal strains, and
Ax

Ay

Axy

24 35 ¼ �
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

24 35 1 0

0 1

0 0

24 35 aðZ; T Þ
aðZ; T Þ

� �
ð15Þ
in which the thermal expansion coefficient a is given in detail in Eq. (5b), and
Q11 ¼ Q22 ¼
EðZ; T Þ
1� m2

; Q12 ¼
mEðZ; T Þ
1� m2

; Q16 ¼ Q26 ¼ 0; Q44 ¼ Q55 ¼ Q66 ¼
EðZ; T Þ
2ð1þ mÞ ð16Þ
where E is given in detail in Eq. (5a).

It is assumed that all four edges are simply supported with no in-plane displacements. The boundary

conditions are

X ¼ 0; a:
W ¼ Wy ¼ 0 ð17aÞ

U ¼ 0 ð17bÞ

Nxy ¼ 0 ð17cÞ

Y ¼ 0; b:
W ¼ Wx ¼ 0 ð17dÞ

V ¼ 0 ð17eÞ

Nxy ¼ 0 ð17fÞ

Note that the stretching–bending coupling gives rise to bending curvatures under the action of in-plane

loading, no matter how small these loads may be. In this situation the boundary condition of zero bending

moment cannot be incorporated accurately, as reported in Shen (2002). The conditions expressing the

immovability conditions (17b) and (17e) are fulfilled on the average sense as (Shen, 2002)
Z b

0

Z a

0

oU
oX

dX dY ¼ 0 ð18aÞ
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Z a

0

Z b

0

oV
oY

dY dX ¼ 0 ð18bÞ
In Eq. (18)
oU
oX

¼ A�
11

o2F
oY 2

þ A�
12

o2F
oX 2

þ B�
11

�
� 4

3h2
E�
11

�
oWx

oX
þ B�

12

�
� 4

3h2
E�
12

�
oWy

oY

� 4

3h2
E�
11

o2W
oX 2

�
þ E�

12

o2W
oY 2

�
� 1

2

oW
oX

� �2

� A�
11N

T

x

�
þ A�

12N
T

y

�
ð19aÞ

oV
oY

¼ A�
22

o2F
oX 2

þ A�
12

o2F
oY 2

þ B�
21

�
� 4

3h2
E�
21

�
oWx

oX
þ B�

22

�
� 4

3h2
E�
22

�
oWy

oY

� 4

3h2
E�
21

o2W
oX 2

�
þ E�

22

o2W
oY 2

�
� 1

2

oW
oY

� �2

� A�
12N

T

x

�
þ A�

22N
T

y

�
ð19bÞ
In Eqs. (19a) and (19b), and what follows, [A�
ij], [B

�
ij], [D

�
ij], [E

�
ij], [F

�
ij ] and [H �

ij] (i; j ¼ 1, 2, 6) are reduced

stiffness matrices, determined through relationships
A� ¼ A�1; B� ¼ �A�1B; D� ¼ D� BA�1B; E� ¼ �A�1E; F� ¼ F� EA�1B;

H� ¼ H� EA�1E ð20Þ
where Aij, Bij etc., are the plate stiffnesses, defined in the standard way (Reddy, 1984).
3. Analytical method and asymptotic solutions

Having developed the theory, we will try to solve Eqs. (10)–(13) with boundary condition (17). Before
proceeding, it is convenient to first define the following dimensionless quantities for the plate [with cijk in
Eq. (28) below defined in Shen (2002)].
x ¼ pX=a; y ¼ pY =b; z ¼ Z=h; b ¼ a=b; W ¼ W =½D�
11D

�
22A

�
11A

�
22�

1=4

F ¼ F =½D�
11D

�
22�

1=2
; ðWx;WyÞ ¼ ðWx;WyÞa=p½D�

11D
�
22A

�
11A

�
22�

1=4
; c5 ¼ �A�

12=A
�
22

c14 ¼ ½D�
22=D

�
11�

1=2
; c24 ¼ ½A�

11=A
�
22�

1=2
; ðcT1; cT2Þ ¼ ðAT

X ;A
T
y Þa2=p2½D�

11D
�
22�

1=2

ðcT3; cT4; cT6; cT7Þ ¼ ðDT
x ;D

T
y ; F

T
x ; F

T
y Þa2=p2h2D�

11

ðMx;My ; Px; Py ;MT
x ;M

T
y ; P

T
x ; P

T
y Þ

¼ ðMx;My ; 4Px=3h2; 4Py=3h2;M
T

x ;M
T

y ; 4P
T

x =3h
2; 4P

T

y =3h
2Þa2=p2D�

11½D�
11D

�
22A

�
11A

�
22�

1=4

s ¼ pt
a

ffiffiffiffiffi
E0

q0

s
; c170 ¼ � I1E0a2

p2q0D
�
11

; c171 ¼
4E0ðI5I1 � I4I2Þ
3q0h2I1D

�
11

ðc80; c90; c10Þ ¼ ðI8; I9; I10Þ
E0

q0D
�
11

; kq ¼ qa4=p4D�
11½D�

11D
�
22A

�
11A

�
22�

1=4

ð21Þ
in which E0 and q0 are the reference values of Eb and qb at the room temperature (T0 ¼ 300 K), respectively,

and AT
x ð¼ AT

y Þ, DT
x ð¼ DT

y Þ, and F T
x ð¼ F T

y Þ, are defined by
AT
x DT

x F T
x

AT
y DT

y F T
y

� �
T1 ¼ �

Z h=2

�h=2

Ax

Ay

� �
DT ðZÞð1; Z; Z3ÞdZ ð22Þ
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where T1 ¼ ðTt þ Tb � 2T0Þ=2. We then expand the temperature T ðzÞ in the Taylor series as
T ðzÞ ¼ s0 þ s1zþ s2z2 þ s3z3 þ s4z4 þ s5z5 þ � � � ð23Þ
From Eqs. (22) and (23), AT
x , D

T
x and F T

x are determined, detail of which can be found in Appendix A.

Eqs. (10)–(13) can then be re-written in the following dimensionless form
L11ðW Þ � L12ðWxÞ � L13ðWyÞ þ c14L14ðF Þ � L16ðMTÞ

¼ c14b
2LðW ; F Þ þ L17ð €W Þ þ c80

o €Wx

ox
þ c80b

o €Wy

oy
þ kq ð24Þ

L21ðF Þ þ c24L22ðWxÞ þ c24L23ðWyÞ � c24L24ðW Þ ¼ � 1

2
c24b

2LðW ;W Þ ð25Þ

L31ðW Þ þ L32ðWxÞ � L33ðWyÞ þ c14L34ðF Þ � L36ðSTÞ ¼ c90
o €W
ox

þ c10 €Wx ð26Þ

L41ðW Þ � L42ðWxÞ þ L43ðWyÞ þ c14L44ðF Þ � L46ðSTÞ ¼ c90b
o €W
oy

þ c10 €Wy ð27Þ
where the dimensionless operators Lijð Þ and Lð Þ are defined as in Shen (2002).

The boundary conditions of Eq. (17) become

x ¼ 0, p:
W ¼ Wy ¼ 0 ð28aÞ

F;xy ¼ 0 ð28bÞ

Z p

0

Z p

0

c224b
2 o

2F
oy2

"
� c5

o2F
ox2

þ c24 c511
oWx

ox

�
þ c233b

oWy

oy

�
� c24 c611

o2W
ox2

�
þ c244b

2 o
2W
oy2

�

� 1

2
c24

oW
ox

� �2

þ c224cT1
�

� c5cT2
	
T1

#
dxdy ¼ 0 ð28cÞ
y ¼ 0, p:
W ¼ Wx ¼ 0 ð28dÞ

F;xy ¼ 0 ð28eÞ

Z p

0

Z p

0

o2F
ox2

"
� c5b

2 o
2F
oy2

þ c24 c220
oWx

ox

�
þ c522b

oWy

oy

�
� c24 c240

o2W
ox2

�
þ c622b

2 o
2W
oy2

�

� 1

2
c24b

2 oW
oy

� �2

þ ðcT2 � c5cT1ÞT1

#
dy dx ¼ 0 ð28fÞ
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We assume that the solutions of Eqs. (24)–(28) can be expressed as
W ðx; y; sÞ ¼ W �ðx; yÞ þ eW ðx; y; sÞ
Wxðx; y; sÞ ¼ W�

xðx; yÞ þ eWxðx; y; sÞ
Wyðx; y; sÞ ¼ W�

yðx; yÞ þ eWyðx; y; sÞ
F ðx; y; sÞ ¼ F �ðx; yÞ þ eF ðx; y; sÞ

ð29Þ
where W �ðx; yÞ is an initial deflection due to initial thermal bending moment, and eW ðx; y; sÞ is an additional

deflection. W�
xðx; yÞ, W�

yðx; yÞ and F �ðx; yÞ are the mid-plane rotations and stress function corresponding to

W �ðx; yÞ. eWxðx; y; sÞ, eWyðx; y; sÞ and eF ðx; y; sÞ are defined analogously to W�
xðx; yÞ, W�

yðx; yÞ and F �ðx; yÞ, but
are for eW ðx; y; sÞ.

Due to the bending-stretching coupling effect in the FGM plate, the thermal pre-load will bring about

deflections and bending curvatures which have significant influences on the plate vibration characteristics.

To account for this effect, the pre-vibration solutions W �ðx; yÞ, W�
xðx; yÞ, W�

yðx; yÞ and F �ðx; yÞ are sought at
the first step from the following nonlinear equations
L11ðW �Þ � L12ðW�
xÞ � L13ðW�

yÞ þ c14L14ðF �Þ � L16ðMTÞ þ c14b
2 px

o2W �

ox2

�
þ py

o2W �

oy2

�
¼ c14b

2LðW �; F �Þ ð30Þ

L21ðF �Þ þ c24L22ðW�
xÞ þ c24L23ðW�

yÞ � c24L24ðW �Þ ¼ � 1

2
c24b

2LðW �;W �Þ ð31Þ

L31ðW �Þ þ L32ðW�
xÞ � L33ðW�

yÞ þ c14L34ðF �Þ � L36ðSTÞ ¼ 0 ð32Þ

L41ðW �Þ � L42ðW�
xÞ þ L43ðW�

yÞ þ c14L44ðF �Þ � L46ðSTÞ ¼ 0 ð33Þ
In Eq. (30), px and py are edge compressive stresses induced by temperature rise with edge restraints. The

solutions of Eqs. (30)–(33) can be assumed to be as
W �ðx; yÞ ¼
X

k¼1;3;...

X
l¼1;3;...

wkl sin kx sin ly

W�
xðx; yÞ ¼

X
k¼1;3;...

X
l¼1;3;...

ðwxÞkl cos kx sin ly

W�
yðx; yÞ ¼

X
k¼1;3;...

X
l¼1;3;...

ðwyÞkl sin kx cos ly

F �ðx; yÞ ¼ � 1

2
Bð0Þ
00 y

2
�

þ bð0Þ00 x
2
�
þ
X

k¼1;3;...

X
l¼1;3;...

fkl sin kx sin ly

ð34Þ
We then expand the constant thermal bending moments in the double Fourier sine series as
MT
x ST

x

MT
y ST

y

� �
¼ � M ð0Þ

x Sð0Þ
x

M ð0Þ
y Sð0Þ

y

� � X
k¼1;3;...

X
l¼1;3;...

1

kl
sin kx sin ly ð35Þ
Substituting Eqs. (34) and (35) into Eqs. (30)–(33) and applying Galerkin procedure to Eqs. (30) and

(31), Wkl, ðwxÞkl, ðwyÞkl and fkl can easily be determined, the detailed expressions are given in Appendix B.
Then an initially stressed FGM plate is under consideration and eW ðx; y; sÞ, eWxðx; y; sÞ, eWyðx; y; sÞ andeF ðx; y; sÞ satisfy the nonlinear equations
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L11ð eW Þ � L12ð eWxÞ � L13ð eWyÞ þ c14L14ðeF Þ
¼ c14b

2L eW� þ W �; eF �þ L17
€eW� �

þ c80
o
€eWx

ox
þ c80b

o
€eWy

oy
þ kq ð36Þ

L21ðeF Þ þ c24L22ð eWxÞ þ c24L23ð eWyÞ � c24L24ð eW Þ ¼ � 1

2
c24b

2Lð eW þ 2W �; eW Þ ð37Þ

L31ð eW Þ þ L32ð eWxÞ � L33ð eWyÞ þ c14L34ðeF Þ ¼ c90
o
€eW
ox

þ c10
€eWx ð38Þ

L41ð eW Þ � L42ð eWxÞ þ L43ð eWyÞ þ c14L44ðeF Þ ¼ c90b
o
€eW
oy

þ c10
€eWy ð39Þ
The initial conditions are assumed to be
eW js¼0 ¼
o eW
os







s¼0

¼ 0 ð40aÞ

eWxjs¼0 ¼
o eWx

os







s¼0

¼ 0 ð40bÞ

eWy js¼0 ¼
o eWy

os







s¼0

¼ 0 ð40cÞ
A perturbation technique is now used to solve Eqs. (36)–(39). The essence of this procedure, in the

present case, is to assume that
eW ðx; y;es; eÞ ¼X
j¼1

ejWjðx; y;esÞ
eF ðx; y;es; eÞ ¼X

j¼1

eiFjðx; y;esÞ
eWxðx; y;es; eÞ ¼X

j¼1

ejWxjðx; y;esÞ
eWyðx; y;es; eÞ ¼X

j¼1

ejWyjðx; y;esÞ
kqðx; y;es; eÞ ¼X

j¼1

ejkjðx; y;esÞ

ð41Þ
where e is a small perturbation parameter. Here we introduce an important parameter es ¼ es, which may be

called a slow variable, to improve perturbation procedure for solving nonlinear dynamic problem.

Substituting Eq. (41) into Eqs. (36)–(39), and collecting terms of the same order of e, a set of pertur-

bation equations is obtained. Applying Galerkin procedure to the second equation of each order, and

solving these equations step by step, we obtain asymptotic solutions, up to third-order, as
eW ðx; y; sÞ ¼ e½w1ðsÞ þ g1€w1ðsÞ� sinmx sin ny þ ðew1ðsÞÞ3½ag311 sinmx sin ny þ g331 sin 3mx sin ny

þ g313 sinmx sin 3ny� þOðe4Þ ð42Þ
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eWxðx; y; sÞ ¼ e gð1;1Þ11 w1ðsÞ
h

þ g2€w1ðsÞ
i
cosmx sin ny þ g12ðew1ðsÞÞ2 sin 2mxþ ðew1ðsÞÞ3

� agð1;1Þ11 g311 cosmx sin ny
h

þ gð3;1Þ11 g331 cos 3mx sin ny þ gð1;3Þ11 g313 cosmx sin 3ny
i
þOðe4Þ

ð43Þ
eWyðx; y; sÞ ¼ e gð1;1Þ21 w1ðsÞ
h

þ g3€w1ðsÞ
i
sinmx cos ny þ g22ðew1ðsÞÞ2 sin 2ny þ ðew1ðsÞÞ3

� agð1;1Þ21 g311 sinmx cos ny
h

þ gð3;1Þ21 g331 sin 3mx cos ny þ gð1;3Þ21 g313 sinmx cos 3ny
i
þOðe4Þ

ð44Þ
eF ðx; y; sÞ ¼ e gð1;1Þ31 w1ðsÞ
h

þ g4€w1ðsÞ
i
sinmx sin ny

� ðew1ðsÞÞ2 Bð2Þ
00 y

2=2
�

þ bð2Þ00 x
2=2� g402 cos 2ny � g420 cos 2mx

�
þ ðew1ðsÞÞ3

� agð1;1Þ31 g311 sinmx sin ny þ gð3;1Þ31 g331 sin 3mx sin ny
h

þ gð1;3Þ31 g313 sinmx sin 3ny
i
þOðe4Þ ð45Þ
kqðx; y; sÞ ¼ e g41w1ðsÞ
h

þ g43€w1ðsÞ
i
sinmx sin ny þ ðew1ðsÞÞ2ðg441 cos 2mxþ g442 cos 2nyÞ

� c14b
2ðew1ðsÞÞ2

X
k

X
l

wkl Bð2Þ
00 k

2
�

þ bð2Þ00 l
2 � 4k2n2g402 cos 2ny � 4l2m2g420 cos 2mx

�
� sin kx sin ly þ �ag42ðew1ðsÞÞ3 sinmx sin ny þOðe4Þ ð46Þ
Note that in Eqs. (42)–(46) es is replaced by s and for the case of free vibration a ¼ 0, �a ¼ 1, otherwise

a ¼ 1, �a ¼ 0. Coefficients gði;jÞ11 , gði;jÞ21 , gði;jÞ31 (i; j ¼ 1; 3) etc. are given in detail in Appendix B.

Multiplying Eq. (46) by (sinmx sin ny) and integrating over the plate area, one has
g43
d2ðew1Þ
ds2

þ g41ðew1Þ þ g44ðew1Þ2 þ �ag42ðew1Þ3 ¼ �kqðsÞ ð47Þ
in which
�kqðsÞ ¼
4

p2

Z p

0

Z p

0

kqðx; y; sÞ sinmx sin ny dxdy ð48Þ
3.1. Free vibration

When �a ¼ 1, kqðsÞ ¼ 0, Eq. (47) becomes the free vibration equation of the plate. The nonlinear fre-

quency of the plates can be expressed as (Wang, 1992)
xNL ¼ xL 1

�
þ 9g42g41 � 10g244

12g241
A2

�1=2
ð49Þ
where xL ¼ ½g41=g43�1=2 is the dimensionless linear frequency, and A ¼ W max=h is the amplitude to thickness

ratio. According to Eq. (21), the corresponding linear frequency can be expressed as �xL ¼ xLðp=aÞ
ðE0=q0Þ

1=2
, where E0 and q0 are defined as in Eq. (21).
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3.2. Forced vibration

When the forced vibration is under consideration, we take �a ¼ 0. In such a case, Eq. (47) can be re-

written as
e€w1ðsÞ þ ew1ðsÞx2
L þ

g44
g43

ðew1ðsÞÞ2 þOðe4Þ ¼
�kqðsÞ
g43

ð50Þ
If zero-valued initial conditions prevail, i.e. w1ð0Þ ¼ _w1ð0Þ ¼ 0, Eq. (50) may then be solved by using the

Runge–Kutta iteration scheme (Pearson, 1986)
ðew1Þiþ1 ¼ ðew1Þi þ Dsðe _w1Þi þ
ðDsÞ2

6
ðL1 þ L2 þ L3Þ

ðe _w1Þiþ1 ¼ ðe _w1Þi þ
Ds
6
ðL1 þ 2L2 þ 2L3 þ L4Þ

ð51Þ
where Ds is the time step, and
L1 ¼ f ðsi; ðew1ÞÞ; L2 ¼ f si

 
þ Ds

2
; ðew1Þi þ

Dsðe _w1Þi
2

!

L3 ¼ f si

 
þ Ds

2
; ðew1Þi þ

Dsðe _w1Þi
2

þ ðDsÞ2

4
L1

!

L4 ¼ f si

 
þ Ds; ðew1Þi þ Dsðe _w1Þi þ

ðDsÞ2

2
L2

! ð52Þ
in which
f ðs; xÞ ¼ �x2
Lx�

g44
g43

x2 þ
�kqðsÞ
g43

ð53Þ
As a result, the solution of Eq. (50) is obtained numerically. Re-substituting it into Eqs. (42)–(46), both

displacement and stress function are determined. Next, substituting Eq. (29) into boundary conditions (28),

the coefficients Bð0Þ
00 , b

ð0Þ
00 , B

ð2Þ
00 and bð2Þ00 are then determined as given in Appendix B.
4. Numerical examples and discussion

Numerical results are presented in this section for FGM plates with two constituent materials. A pro-

gram was developed for the purpose and many examples have been solved numerically, including the

following.

4.1. Comparison studies

To ensure the accuracy and effectiveness of the present method, three test examples were solved for free

and forced vibrations of pure isotropic and FGM plates.

Example 1. We first consider the nonlinear free vibration of an isotropic square plate (a=b ¼ 1:0, b=h ¼ 10

and m ¼ 0:3) under different thermal loading conditions DT=Tcr ¼ 0, 0.25, 0.5 and 0.75, where
Tcr ¼ 119:783=ða� 104Þ is the critical temperature of the plate (Bhimaraddi and Chandrashekhara, 1993).
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The frequency parameter X ¼ �xLða2=hÞ½qð1� m2Þ=E�1=2 and nonlinear to linear frequency ratio xNL=xL are

calculated and compared in Table 1 with the results of Bhimaraddi and Chandrashekhara based on the

classical plate theory (CPT), first-order shear deformation plate theory (FSDPT) and higher-order shear

deformation plate theory (HSDPT).

Example 2. We now consider the free vibration of an FGM square plate made of aluminum oxide and Ti–

6Al–4V. The top surface is ceramic-rich, whereas the bottom surface is metal-rich. The material properties,

as given in He et al. (2001), are: Eb ¼ 105:7 GPa, mb ¼ 0:2981, qb ¼ 4429 kg/m3 for Ti–6Al–4V; and

Et ¼ 320:24 GPa, mt ¼ 0:26, qt ¼ 3750 kg/m3 for aluminum oxide. The FGM plate has a ¼ b ¼ 0:4 m and

h ¼ 5 mm. Table 2 gives the comparison of natural frequency �xL (Hz) for the two special cases of isotropy,

i.e. volume fraction index N ¼ 0 and 2000. The FEM results of He et al. (2001) based on the classical plate

theory (CPT) and semi-numerical results of Yang and Shen (2002) based on higher-order shear deformation
plate theory (HSDPT) are also given for direct comparison.
Table 1

Comparison of natural frequency X and nonlinear to linear frequency ratios for an isotropic square plate under different thermal

loading conditions (a=b ¼ 1:0, b=h ¼ 10 and m ¼ 0:3)

DT=Tcr Sources X W max=h

0.0 0.2 0.4 0.6 0.8 1.0

0.25 HSDPTa 4.7624 1.000 1.027 1.105 1.222 1.368 1.535

FSDPTa 4.7232 0.922 1.019 1.097 1.215 1.362 1.529

CPTa 4.9380 1.037 1.063 1.138 1.252 1.395 1.559

Present 4.7636 1.000 1.027 1.105 1.225 1.374 1.546

0.5 HSDPT 3.8884 1.000 1.041 1.153 1.318 1.517 1.739

FSDPT 3.8405 0.988 1.029 1.143 1.309 1.509 1.732

CPT 4.1017 1.055 1.094 1.201 1.360 1.554 1.772

Present 3.8891 1.000 1.040 1.155 1.323 1.528 1.757

0.75 HSDPT 2.7495 1.000 1.080 1.287 1.569 1.893 2.242

FSDPT 2.6813 0.975 1.057 1.267 1.553 1.880 2.230

CPT 3.0437 1.107 1.180 1.372 1.640 1.953 2.293

Present 2.7492 1.000 1.080 1.291 1.582 1.916 2.275

aHSDPT, FSDPT and CPT results all from Bhimaraddi and Chandrashekhara (1993).

Table 2

Comparison of natural frequency �xL (Hz) for simply supported FGM plates for the two special cases of isotropy

Mode sequence N ¼ 0 N ¼ 2000

He et al.

(2001)

Yang and Shen

(2002)

Present He et al.

(2001)

Yang and Shen

(2002)

Present

1 144.66 143.96 144.94 268.92 261.46 271.03

2 360.53 360.07 362.04 669.40 653.14 677.04

3 360.53 360.07 362.04 669.40 653.14 677.04

4 569.89 568.88 578.78 1052.49 1044.31 1082.38

5 720.57 718.22 723.06 1338.52 1304.79 1352.24

6 720.57 718.22 723.06 1338.52 1304.79 1352.24

7 919.74 916.40 939.19 1695.23 1694.98 1756.49

8 919.74 916.40 939.19 1695.23 1694.98 1756.49

9 1225.72 1207.09 1226.19 2280.95 2214.34 2294.47

10 1225.72 1207.09 1226.19 2280.95 2214.34 2294.47
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Example 3. Finally, the curves of central deflection as functions of time for an FGM square plate subjected

to a suddenly applied uniform load with q0 ¼ �106 N/m2 and in thermal environments are plotted and

compared in Fig. 1 with the FEM results of Praveen and Reddy (1998) based on first-order shear defor-

mation plate theory (FSDPT). The FGM plate is made of aluminum and alumina. The thickness and side
of the square plate are 0.01 and 0.2 m, respectively. The top surface is ceramic-rich, whereas the bottom

surface is metal-rich. The temperature is varied only in the thickness direction and determined by the

steady-state heat conduction equation with the boundary conditions. A stress free temperature T0 ¼ 0 �C
was taken. The material properties adopted are: Eb ¼ 70 GPa, mb ¼ 0:3, qb ¼ 2707 kg/m3, ab ¼ 23:0� 10�6/

�C, jb ¼ 204 W/mK for aluminum; and Et ¼ 380 GPa, mt ¼ 0:3, qt ¼ 3800 kg/m3, at ¼ 7:4� 10�6/�C,
jt ¼ 10:4 W/mK for alumina. In Fig. 1 dimensionless central deflection and time are defined by W ¼
ðW Emh=q0a2Þ and ~t ¼ t½Em=a2qm�

1=2
, respectively.

These three comparisons show that the present results agree well with existing results. Note that in these

examples the material properties are assumed to be independent of temperature.
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Fig. 1. Comparison of central deflection versus time curves for an FGM square plate subjected to a suddenly applied uniform load and

in thermal environments.

Table 3

Temperature-dependent coefficients for ceramic and metals, from Reddy and Chin (1998)

Materials Proprieties P0 P�1 P1 P2 P3 P (T ¼ 300 K)

ZrO2 E (Pa) 244.27e+9 0 )1.371e)3 1.214e)6 )3.681e)10 168.063e+9

a (1/K) 12.766e)6 0 )1.491e)3 1.006e)5 )6.778e)11 18.591e)6

Ti–6Al–4V E (Pa) 122.56e+9 0 )4.586e)4 0 0 105.698e+9

a (1/K) 7.5788e)6 0 6.638e)4 )3.147e)6 0 6.941e)6

Si3N4 E (Pa) 348.43e+9 0.0 )3.070e)4 2.160e)7 )8.946e)11 322.2715e+9

a (1/K) 5.8723e)6 0.0 9.095e)4 0.0 0.0 7.4746e)6

SUS304 E (Pa) 201.04e+9 0.0 3.079e)4 )6.534e)7 0.0 207.7877e+9

a (1/K) 12.330e)6 0.0 8.086e)4 0.0 0.0 15.321e)6



Table 4

Natural frequency parameter X ¼ �xLða2=hÞ½q0ð1� m2Þ=E0�1=2 for ZrO2/Ti–6Al–4V square plates in thermal environments

Mode

ð1; 1Þ ð1; 2Þ ð2; 2Þ ð1; 3Þ ð2; 3Þ
Tb ¼ 300 K ZrO2 8.273 19.261 28.962 34.873 43.070

Tt ¼ 300 K 0.5 7.139 16.643 25.048 30.174 37.288

1.0 6.657 15.514 23.345 28.120 34.747

2.0 6.286 14.625 21.978 26.454 32.659

Ti–6Al–4V 5.400 12.571 18.903 22.762 28.111

Tb ¼ 300 K ZrO2 7.868 18.659 28.203 34.015 42.045

Tt ¼ 400 K 0.5 6.876 16.264 24.578 29.651 36.664

Temperature-

dependent

1.0 6.437 15.202 22.956 27.696 34.236

2.0 6.101 14.372 21.653 26.113 32.239

Ti–6Al–4V 5.322 12.455 18.766 22.603 27.921

Tb ¼ 300 K ZrO2 8.122 19.193 28.986 34.958 43.190

Tt ¼ 400 K 0.5 7.154 16.644 25.136 30.136 37.476

Temperature-

independent

1.0 6.592 15.531 23.442 28.273 34.936

2.0 6.238 14.655 22.078 26.605 32.840

Ti–6Al–4V 5.389 12.620 19.104 22.905 28.261

Tb ¼ 300 K ZrO2 6.685 16.986 26.073 31.567 39.212

Tt ¼ 600 K 0.5 6.123 15.169 23.166 28.041 34.789

Temperature-

dependent

1.0 5.819 14.287 21.768 26.342 32.660

2.0 5.612 13.611 20.652 24.961 30.904

Ti–6Al–4V 5.118 12.059 18.175 21.898 27.045

Tb ¼ 300 K ZrO2 7.686 18.749 28.527 34.472 42.713

Tt ¼ 600 K 0.5 6.776 16.367 24.859 30.044 37.201

Temperature-

independent

1.0 6.362 15.308 23.216 28.036 34.714

2.0 6.056 14.474 21.896 26.435 32.664

Ti–6Al–4V 5.284 12.511 18.902 22.784 28.168
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4.2. Parametric studies

The close agreements between the present results and those of the referenced solutions as shown in

Tables 1 and 2, and Fig. 1 demonstrated the accuracy and effectiveness of the present method. The method

was thus deployed to carry out a parametric study to examine the nonlinear vibration and dynamic re-

sponse of FGM plates in thermal environments. Two sets of material mixture are considered. One is zir-

conium oxide and titanium alloy, referred to as ZrO2/Ti–6Al–4V, and the other is silicon nitride and

stainless steel, referred to as Si3N4/SUS304. The upper surface of these two FGM plates is ceramic-rich and
the lower surface is metal-rich. The thickness and side of the square plate are h ¼ 0:025 m and a ¼ 0:2 m,

respectively. The mass density and thermal conductivity are: q ¼ 3000 kg/m3, j ¼ 1:80 W/mK for ZrO2;

q ¼ 4429 kg/m3, j ¼ 7:82 W/mK for Ti–6Al–4V; q ¼ 2370 kg/m3, j ¼ 9:19 W/mK for Si3N4; and q ¼ 8166

kg/m3, j ¼ 12:04 W/mK for SUS304. Young�s modulus and thermal expansion coefficient of these mate-

rials are assumed to be temperature-dependent and listed in Table 3 (from Reddy and Chin, 1998). Pois-

son�s ratio m is assumed to be a constant, for ZrO2/Ti–6Al–4V plate m ¼ 0:3, and for Si3N4/SUS304 one

m ¼ 0:28.
In all examples the deflection mode ðm; nÞ ¼ ð1; 1Þ was used and in Eq. (34) k and l are taken as 1, 3 and

5, and in Eqs. (51) and (52) Ds ¼ 2 ls is taken as the time step for Runge–Kutta iteration method. The

temperature field is assumed to vary only in the thickness direction and determined by the steady-state heat



Table 6

Effect of volume fraction index N on the nonlinear to linear frequency ratio xNL=xL of FGM square plates in thermal environments

(Tb ¼ 300 K, Tt ¼ 400 K)

W max=h

0.0 0.2 0.4 0.6 0.8 1.0

ZrO2/Ti–6Al–4V

ZrO2 1.000 1.023 1.087 1.186 1.312 1.461

0.5 1.000 1.023 1.087 1.186 1.312 1.460

1.0 1.000 1.022 1.086 1.183 1.310 1.455

2.0 1.000 1.022 1.084 1.179 1.302 1.444

Ti–6Al–4V 1.000 1.022 1.083 1.177 1.300 1.440

Si3N4/SUS304

Si3N4 1.000 1.022 1.084 1.181 1.303 1.446

0.5 1.000 1.022 1.084 1.181 1.302 1.444

1.0 1.000 1.022 1.084 1.180 1.301 1.442

2.0 1.000 1.022 1.082 1.176 1.299 1.440

SUS304 1.000 1.022 1.082 1.172 1.296 1.438

Table 5

Natural frequency parameter X ¼ �xLða2=hÞ½q0ð1� m2Þ=E0�1=2 for Si3N4/SUS304 square plates in thermal environments

Mode

ð1; 1Þ ð1; 2Þ ð2; 2Þ ð1; 3Þ ð2; 3Þ
Tb ¼ 300 K Si3N4 12.495 29.131 43.845 52.822 65.281

Tt ¼ 300 K 0.5 8.675 20.262 30.359 36.819 45.546

1.0 7.555 17.649 26.606 32.081 39.692

2.0 6.777 15.809 23.806 28.687 35.466

SUS304 5.405 12.602 18.967 22.850 28.239

Tb ¼ 300 K Si3N4 12.397 29.083 43.835 52.822 65.310

Tt ¼ 400 K 0.5 8.615 20.215 30.530 36.824 45.575

Temperature-

dependent

1.0 7.474 17.607 26.590 32.088 39.721

2.0 6.693 15.762 23.786 28.686 35.491

SUS304 5.311 12.539 18.959 22.828 28.246

Tb ¼ 300 K Si3N4 12.382 29.243 44.072 53.105 65.559

Tt ¼ 400 K 0.5 8.641 20.316 30.682 37.007 45.802

Temperature-

independent

1.0 7.514 17.694 26.717 32.242 39.908

2.0 6.728 15.836 23.893 28.816 35.648

SUS304 5.335 12.587 19.008 22.908 28.344

Tb ¼ 300 K Si3N4 11.984 28.504 43.107 51.998 64.358

Tt ¼ 600 K 0.5 8.269 19.783 29.998 36.239 44.901

Temperature-

dependent

1.0 7.171 17.213 26.109 31.557 39.114

2.0 6.398 15.384 23.327 28.185 34.918

SUS304 4.971 12.089 18.392 22.221 27.557

Tb ¼ 300 K Si3N4 12.213 28.976 43.797 52.821 65.365

Tt ¼ 600 K 0.5 8.425 20.099 30.458 36.781 45.572

Temperature-

independent

1.0 7.305 17.486 26.506 31.970 39.692

2.0 6.523 15.632 23.685 28.609 35.436

SUS304 5.104 12.342 18.763 22.658 28.084
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Table 7

Effect of temperature field on the nonlinear to linear frequency ratio xNL=xL of FGM square plates (N ¼ 2:0)

W max=h

0.0 0.2 0.4 0.6 0.8 1.0

ZrO2/Ti–6Al–4V

Tb ¼ 300 K, Tt ¼ 300 K 1.000 1.021 1.082 1.176 1.296 1.436

Tb ¼ 300 K, Tt ¼ 400 K

Temperature-dependent 1.000 1.022 1.084 1.179 1.302 1.444

Temperature-independent 1.000 1.022 1.083 1.178 1.300 1.441

Tb ¼ 300 K, Tt ¼ 600 K

Temperature-dependent 1.000 1.024 1.091 1.194 1.325 1.477

Temperature-independent 1.000 1.023 1.087 1.183 1.314 1.462

Si3N4/SUS304

Tb ¼ 300 K, Tt ¼ 300 K 1.000 1.021 1.081 1.174 1.293 1.432

Tb ¼ 300 K, Tt ¼ 400 K

Temperature-dependent 1.000 1.022 1.082 1.176 1.299 1.440

Temperature-independent 1.000 1.021 1.082 1.175 1.255 1.437

Tb ¼ 300 K, Tt ¼ 600 K

Temperature-dependent 1.000 1.023 1.088 1.188 1.315 1.463

Temperature-independent 1.000 1.023 1.087 1.187 1.313 1.460
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conduction equation with the boundary conditions across the plate thickness. Typical results are listed in
Tables 4–7 and plotted in Figs. 2–5, for which the dynamic load is assumed to be a suddenly applied

uniform load with q0 ¼ �50 MPa.

Tables 4 and 5 show the effect of volume fraction index N on the natural frequency parameter of ZrO2/

Ti–6Al–4V and Si3N4/SUS304 plates under three thermal loading conditions: case 1, Tb ¼ 300 K, Tt ¼ 300

K; case 2, Tb ¼ 300 K, Tt ¼ 400 K; and case 3, Tb ¼ 300 K, Tt ¼ 600 K. Temperature-dependent and

temperature-independent material properties (values at constant temperature 300 K, as listed in Table 3)

are both taken into account. In these two Tables X ¼ �xLða2=hÞ½q0ð1� m2Þ=E0�1=2, where E0 and q0 are the

reference values of Eb and qb at T0 ¼ 300 K. Then Tables 6 and 7 show, respectively, the effects of volume
fraction index N and temperature field on the nonlinear to linear frequency ratios xNL=xL of the same two

FGM plates. It can be seen that the natural frequency of the FGM plate decreases with the increase of
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Fig. 2. Effect of volume fraction index N on the dynamic response of ZrO2/Ti–6Al–4V square plate subjected to a suddenly applied

uniform load and in thermal environments. (a) Central deflection versus time, (b) bending moment versus time.
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Fig. 3. Effect of volume fraction index N on the dynamic response of Si3N4/SUS304 square plate subjected to a suddenly applied

uniform load and in thermal environments. (a) Central deflection versus time, (b) bending moment versus time.
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volume fraction index N , but it has a small effect on the nonlinear to linear frequency ratios. On the other
hand, the temperature rise decreases the natural frequencies but increases the nonlinear to linear frequency

ratios. The results show that the FGM plate will have lower natural frequency and slightly higher nonlinear

to linear frequency ratios when the temperature-dependent material properties are taken into account.

Figs. 2 and 3 show, respectively, the effect of volume fraction index N on the dynamic response of ZrO2/

Ti–6Al–4V and Si3N4/SUS304 plates under thermal environmental condition Tb ¼ 300 K and Tt ¼ 400 K.

It can be seen that the plate deflections are increased by increasing the volume fraction index N . The

bending moment is decreased for the ZrO2/Ti–6Al–4V plate, but it is increased for the Si3N4/SUS304 plate

when the volume fraction index N is increased.
Figs. 4 and 5 show, respectively, the effect of thermal environmental conditions on the dynamic response

of ZrO2/Ti–6Al–4V and Si3N4/SUS304 plates with N ¼ 2:0. The results show that both central deflections

and bending moments are increased with the increase in temperature. It is also be seen that the greater the

temperature rise is, the greater will be the thermally induced initial bending moments.
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(a) Central deflection versus time, (b) bending moment versus time.
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5. Concluding remarks

The nonlinear vibration and dynamic response for simply supported FGM in thermal environments

have been presented. Heat conduction and temperature-dependent material properties are both taken into

account. The formulations are based on higher-order shear deformation plate theory and general von

K�arm�an-type equations, and include thermal effects. Analytical solutions have been presented by using an

improved perturbation technique. A parametric study for FGM plates with different values of volume

fraction index and under different sets of thermal environmental conditions has been carried out. Numerical
results show that the natural frequencies are reduced by increasing the volume fraction index N and

temperature rise. The results also confirm that the temperature field and the volume fraction distribution

have significant effect on the dynamic response of FGM plates.
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Appendix A

In Eq. (23)
s0 ¼ a0 þ 0:5a1 þ ð0:5ÞNþ1a2 þ ð0:5Þ2Nþ1a3 þ ð0:5Þ3Nþ1a4 þ ð0:5Þ4Nþ1a5 þ ð0:5Þ5Nþ1a6

s1 ¼ a1 þ
1

N þ 1
ð0:5ÞNa2 þ

1

2N þ 1
ð0:5Þ2Na3 þ

1

3N þ 1
ð0:5Þ3Na4 þ

1

4N þ 1
ð0:5Þ4Na5 þ

1

5N þ 1
ð0:5Þ5Na6

sk ¼
1

k!
ðN þ 1� kÞ!
ðN þ 1Þ! ð0:5ÞN�kþ1a2

�
þ ð2N þ 1� kÞ!

ð2N þ 1Þ! ð0:5Þ2N�kþ1a3 þ
ð3N þ 1� kÞ!
ð3N þ 1Þ! ð0:5Þ3N�kþ1a4

þ ð4N þ 1� kÞ!
ð4N þ 1Þ! ð0:5Þ4N�kþ1a5 þ

ð5N þ 1� kÞ!
ð5N þ 1Þ! ð0:5Þ5N�kþ1a6

�
ðk ¼ 2–5Þ

ðA:1Þ
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and
A11 ¼ A22 ¼
1

1� m2

Z 0:5

�0:5

Eð0ÞðzÞdz; A12 ¼
m

1� m2

Z 0:5

�0:5

Eð0ÞðzÞdz; A16 ¼ A26 ¼ 0

A44 ¼ A55 ¼ A66 ¼
1

2ð1þ mÞ

Z 0:5

�0:5

Eð0ÞðzÞdz; B11 ¼ B22 ¼
1

1� m2

Z 0:5

�0:5

Eð1ÞðzÞdz

B12 ¼
m

1� m2

Z 0:5

�0:5

Eð1ÞðzÞdz; B16 ¼ B26 ¼ 0; B66 ¼
1

2ð1þ mÞ

Z 0:5

�0:5

Eð1ÞðzÞdz

D11 ¼ D22 ¼
1

1� m2

Z 0:5

�0:5

Eð2ÞðzÞdz; D12 ¼
m

1� m2

Z 0:5

�0:5

Eð2ÞðzÞdz; D16 ¼ D26 ¼ 0

D44 ¼ D55 ¼ D66 ¼
1

2ð1þ mÞ

Z 0:5

�0:5

Eð2ÞðzÞdz; E11 ¼ E22 ¼
1

1� m2

Z 0:5

�0:5

Eð3ÞðzÞdz

E12 ¼
m

1� m2

Z 0:5

�0:5

Eð3ÞðzÞdz; E16 ¼ E26 ¼ 0; E66 ¼
1

2ð1þ mÞ

Z 0:5

�0:5

Eð3ÞðzÞdz

F11 ¼ F22 ¼
1

1� m2

Z 0:5

�0:5

Eð4ÞðzÞdz; F12 ¼
m

1� m2

Z 0:5

�0:5

Eð4ÞðzÞdz; F16 ¼ F26 ¼ 0

F44 ¼ F55 ¼ F66 ¼
1

2ð1þ mÞ

Z 0:5

�0:5

Eð4ÞðzÞdz; H11 ¼ H22 ¼
1

1� m2

Z 0:5

�0:5

Eð6ÞðzÞdz

H12 ¼
m

1� m2

Z 0:5

�0:5

Eð6ÞðzÞdz; H16 ¼ H26 ¼ 0; H66 ¼
1

2ð1þ mÞ

Z 0:5

�0:5

Eð6ÞðzÞdz

AT
x ¼ 2

ð1� mÞ

Z 0:5

�0:5

f ð0ÞðzÞdz; DT
x ¼ 2

ð1� mÞ

Z 0:5

�0:5

f ð1ÞðzÞdz; F T
x ¼ 2

ð1� mÞ

Z 0:5

�0:5

f ð3ÞðzÞdz

ðA:2Þ
where
a0 ¼ Tt; a1 ¼
Tt � Tb

c
; a2 ¼ � Tt � Tb

c
� ktb
ðN þ 1Þkb

; a3 ¼
Tt � Tb

c
� k2tb
ð2N þ 1Þk2b

a4 ¼ � Tt � Tb
c

� k3tb
ð3N þ 1Þk3b

; a5 ¼
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c
� k4tb
ð4N þ 1Þk4b
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� k5tb
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k þ 1
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�
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þ e2
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k þ 4
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þ e4
k þ 5

½ð0:5Þkþ5 � ð�0:5Þkþ5� þ e5
k þ 6

½ð0:5Þkþ6 � ð � 0:5Þkþ6�
�

Z 0:5

�0:5
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�
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þ f2
k þ 3

½ð0:5Þkþ3 � ð�0:5Þkþ3� þ f3
k þ 4

½ð0:5Þkþ4 � ð�0:5Þkþ4�

þ f4
k þ 5

½ð0:5Þkþ5 � ð�0:5Þkþ5� þ f5
k þ 6

½ð0:5Þkþ6 � ð � 0:5Þkþ6�
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in which (i ¼ 0–5)
ei ¼ lð2Þi þ
Xi

k¼0

lð1Þk dði�kÞ; fi ¼
Xi

k¼0

ukai�k; ui ¼
Xi

k¼0

vkeði�kÞ ðA:4Þ
and (with j ¼ 1, 2)
lðjÞ0 ¼ gðjÞ�1=s0 þ gðjÞ0 þ s0g
ðjÞ
1 þ s20g

ðjÞ
2 þ s30g

ðjÞ
3

lðjÞ1 ¼ c1g
ðjÞ
�1 þ s1g

ðjÞ
1 þ 2s0s1g

ðjÞ
2 þ 3s20s1g

ðjÞ
3

lðjÞ2 ¼ c2g
ðjÞ
�1 þ s2g

ðjÞ
1 þ ðs21 þ 2s0s2ÞgðjÞ2 þ 3ðs20s2 þ s0s21Þg

ðjÞ
3

lðjÞ3 ¼ c3g
ðjÞ
�1 þ s3g

ðjÞ
1 þ 2ðs0s3 þ s1s2ÞgðjÞ2 þ ð3s20s3 þ 6s0s1s2 þ s31Þg

ðjÞ
3

lðjÞ4 ¼ s4g
ðjÞ
1 þ ðs22 þ 2s0s4 þ 2s1s3ÞgðjÞ2 þ ð3s20s4 þ 3s0s22 þ 6s0s1s3 þ 3s21s2Þg

ðjÞ
3

lðjÞ5 ¼ s5g
ðjÞ
1 þ 2ðs0s5 þ s1s4 þ s2s3ÞgðjÞ2 þ ð3s20s5 þ 6s0s1s4 þ 6s0s2s3 þ 3s1s22 þ 3s31s3Þg

ðjÞ
3

c1 ¼ � s1
s20
; c2 ¼

s21
s30
� s2
s20
; c3 ¼ � s31

s40
þ 2s1s2

s30
þ s3
s20

d0 ¼ ð0:5ÞN ; d1 ¼ Nð0:5ÞN�1
; d2 ¼ NðN � 1Þð0:5ÞN�2

=2

d3 ¼ NðN � 1ÞðN � 2Þð0:5ÞN�3
=6; d4 ¼ NðN � 1ÞðN � 2ÞðN � 3Þð0:5ÞN�4

=24

d5 ¼ NðN � 1ÞðN � 2ÞðN � 3ÞðN � 4Þð0:5ÞN�5
=120

gð1Þ�1 ¼ pt0p
t
�1 � pb0p

b
�1; gð1Þ0 ¼ pt0 � pb0 ; gð1Þ1 ¼ pt0p

t
1 � pb0p

b
1 ; gð1Þ2 ¼ pt0p

t
2 � pb0p

b
2

gð1Þ3 ¼ pt0p
t
3 � pb0p

b
3 ; gð2Þ�1 ¼ pb0p

b
�1; gð2Þ0 ¼ pb0 ; gð2Þ1 ¼ pb0p

b
1 ; gð2Þ2 ¼ pb0p

b
2 ; gð2Þ3 ¼ pb0p

b
3

ðA:5Þ
In the above equation ptr and pbr (r ¼ �1, 0, 1, 2, 3) are the coefficients in Eq. (2) for Young�s modulus on the

top and bottom surfaces. Note that in Eq. (A.4), vk has the similar form as that of ei, whereas ptr and pbr
(r ¼ �1, 0, 1, 2, 3) are the coefficients in Eq. (2) for thermal expansion coefficient on the top and bottom

surfaces.
Appendix B

In Eq. (34)
wkl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� qkl

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqklÞ2

4
þ ðpklÞ3

27

s
3

vuut þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� qkl

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
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fkl ¼ cðk;lÞ31 w2

kl þ cðk;lÞ32 wkl þ cðk;lÞ33

ðw Þ ¼ cðk;lÞwkl þ cðk;lÞfkl þ cðk;lÞ; ðw Þ ¼ cðk;lÞwkl þ cðk;lÞfkl þ cðk;lÞ

ðB:1Þ
x kl 11 12 13 y kl 21 22 23
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where
cðk;lÞ11 ; cðk;lÞ12 ; cðk;lÞ13

� �
¼ 1

bðk;lÞ32 bðk;lÞ43 � bðk;lÞ42 bðk;lÞ33

� bðk;lÞ41 bðk;lÞ33

�
� bðk;lÞ31 bðk;lÞ43 ; bðk;lÞ44 bðk;lÞ33 � bðk;lÞ34 bðk;lÞ43 ; y3b

ðk;lÞ
43 � y4b

ðk;lÞ
33

�
cðk;lÞ21 ; cðk;lÞ22 ; cðk;lÞ23

� �
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bðk;lÞ33 bðk;lÞ42 � bðk;lÞ43 bðk;lÞ32
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�
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bðk;lÞ24 þ bðk;lÞ22 cðk;lÞ12 þ bðk;lÞ23 cðk;lÞ22

� 16c24klb
2

3p2
; bðk;lÞ21

�
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1 ¼ � bðk;lÞ12 cðk;lÞ12 cðk;lÞ31

�
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yðk;lÞ1 ¼ M ð0Þ

x k=lþ b2M ð0Þ
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y =k

ðB:2Þ
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In Eqs. (35)
M ð0Þ
x Sð0Þ

x

M ð0Þ
y Sð0Þ

y
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¼ 16hT1
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11D

�
22A

�
11A

�
22�

1=4
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� �
ðB:3Þ
In Eqs. (42)–(46) (with i; j ¼ 1; 3)
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2b2Þwkl

��
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�

� c5cT2Þ þ c224ðcT2 � c5cT1Þ�T1
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�

� c224Þm2fkl � c24ðc5c511 þ c224c220Þmwkl

� c24ðc5c233 þ c224c522Þnbwkl þ c5c24ðc611m2 þ c244n
2b2Þwkl þ c324ðc240m2 þ c622n

2b2Þwkl

��
gði;jÞ11 ¼ kði;jÞ23 kði;jÞ31 � kði;jÞ33 kði;jÞ21

kði;jÞ22 kði;jÞ33 � kði;jÞ32 kði;jÞ23

; gði;jÞ21 ¼ kði;jÞ22 kði;jÞ31 � kði;jÞ32 kði;jÞ21

kði;jÞ23 kði;jÞ32 � kði;jÞ33 kði;jÞ22
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2
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2
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2
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3

c31 þ 4c320m2
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3b3
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2
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where
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In the above equations
kði;jÞ11 ¼ c110ðimÞ
4 þ 2c112ðimÞ
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4b4
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in which, when wkl, wxkl, wykl and fkl are considered, a1 ¼ 1, otherwise a1 ¼ 0, and
aði;jÞ1 ¼ � c24
m4 þ 2c212ðimÞ
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